On the Polynomial of the Dunwoody (1, 1)-knots
There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained by the certain cyclically presented group of the D...
Saved in:
Published in | Kyungpook mathematical journal Vol. 52; no. 2; pp. 223 - 243 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the Dunwoody polynomial of (1, 1)-knot in $\mathbb{S}^3$ is to be the Alexander polynomial under the certain condition. Then we find an invariant for the certain class of torus knots and all 2-bridge knots by means of the Dunwoody polynomial. |
---|---|
AbstractList | There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the Dunwoody polynomial of (1, 1)-knot in $\mathbb{S}^3$ is to be the Alexander polynomial under the certain condition. Then we find an invariant for the certain class of torus knots and all 2-bridge knots by means of the Dunwoody polynomial. |
Author | Kim, Soo-Hwan Kim, Yang-Kok |
Author_xml | – sequence: 1 fullname: Kim, Soo-Hwan – sequence: 2 fullname: Kim, Yang-Kok |
BookMark | eNrjYmDJy89LZWLgNDAxNdG1MDQyYWHgNDQyMtU1szQ15GDgLS7OTDIwNTY2NzMzs-Rk0PPPUyjJSFUIyM-pzMvPzUzMUchPA4u4lOaV5-enVCpoGOooGGrqZufllxTzMLCmJeYUp_JCaW4GVTfXEGcP3ezM4pLM-LyU4px4L0dvfyMDkJ0GZuamhsbGZibGxKoDAE8jMo0 |
ContentType | Journal Article |
DBID | JDI |
DEWEY | 510 |
DatabaseName | KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | On the Polynomial of the Dunwoody (1, 1)-knots |
EISSN | 0454-8124 |
EndPage | 243 |
ExternalDocumentID | JAKO201225067513364 |
GroupedDBID | .UV 29L 2WC 5GY 5VS 9ZL AAKDD ABDBF ABPTK ACIPV ACYCR ALMA_UNASSIGNED_HOLDINGS C1A E3Z EBS EJD ESX FRP GROUPED_DOAJ JDI KQ8 KVFHK OK1 P2P RNS TR2 TUS XSB ~8M |
ID | FETCH-kisti_ndsl_JAKO2012250675133643 |
ISSN | 1225-6951 |
IngestDate | Fri Dec 22 12:03:53 EST 2023 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Alexander polynomial Torus knot (1, 1)-decomposition (1, 1)-knot Heegaard diagram Dunwoody 3-manifold Heegaard splitting |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-kisti_ndsl_JAKO2012250675133643 |
Notes | KISTI1.1003/JNL.JAKO201225067513364 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201225067513364&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
ParticipantIDs | kisti_ndsl_JAKO201225067513364 |
PublicationCentury | 2000 |
PublicationDate | 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationTitle | Kyungpook mathematical journal |
PublicationTitleAlternate | Kyungpook mathematical journal |
PublicationYear | 2012 |
SSID | ssib053376669 ssib000364427 ssj0028604 |
Score | 3.7040362 |
Snippet | There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and... |
SourceID | kisti |
SourceType | Open Access Repository |
StartPage | 223 |
Title | On the Polynomial of the Dunwoody (1, 1)-knots |
URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201225067513364&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_RBvOJ15EFBwYxekl4eN3WMjTnBCfNpNG0nspmKq8j89Z40XVrG8PYS2kNpm3zJOd9Jck4QOvUCI-JRaMjDXVxCgSEQj4YRiYFeOD7jQHnlhH731mk90PaADYrzMbPokpTXws-lcSX_QRVkgKuMkv0DsvqlIIBrwBdKQBjKX2HcU3sU75LJTEYXK14pJUBL5V6abCXflK0IhU_GIlF5m-ZstDODof4qox1edPbWIptEsTyf9Zn7JCGtj0AsiB8D8UQ6OVPPpw_M0lyiCUOZAB4K2ljpHMookTa_rCCZVeoIVlnbqVDh3HBa1C6MynwhfcHW6B2A7XqnJ38HGBi4LOAoOzKnKzVs0FWr9cZ1o1ly2oCzWZokAT91wefytVvtOdkhkbo64GZI7v1c4gn9TbSRE3xcV2htoZVxso3Wu7p9pzuo1hMYbnGBG05GmWSOGz43L7F5oRDbRWfNm_5Vi2TfG4poOhkuqZi9hyoiEfE-wp4degbjkcUCl8Yh95lrUh5w6o2o64TGAap-_67Dnx44QmtSomaJjlElfXuPT4A3pbyaN-wXg3sT9A |
link.rule.ids | 230,315,783,787,888,4033 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Polynomial+of+the+Dunwoody+%281%2C+1%29-knots&rft.jtitle=Kyungpook+mathematical+journal&rft.au=Kim%2C+Soo-Hwan&rft.au=Kim%2C+Yang-Kok&rft.date=2012&rft.issn=1225-6951&rft.eissn=0454-8124&rft.volume=52&rft.issue=2&rft.spage=223&rft.epage=243&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201225067513364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6951&client=summon |