Mixed Models, Posterior Means and Penalized Least-Squares
This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/...
Saved in:
Published in | Lecture notes-monograph series Vol. 57; pp. 216 - 236 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Institute of Mathematical Statistics
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/or posterior analysis of certain Gaussian signal-plus-noise models is examined in a more general setting. These connections allow for the application of an efficient, linear time algorithm, to estimate parameters, compute random effects predictions and evaluate likelihoods in a large class of model scenarios. We also show that the methods of generalized cross-validation, restricted maximum likelihood and unbiased risk prediction can be used to estimate the variance components or adaptively select the smoothing parameters in any of the three settings. |
---|---|
AbstractList | This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/or posterior analysis of certain Gaussian signal-plus-noise models is examined in a more general setting. These connections allow for the application of an efficient, linear time algorithm, to estimate parameters, compute random effects predictions and evaluate likelihoods in a large class of model scenarios. We also show that the methods of generalized cross-validation, restricted maximum likelihood and unbiased risk prediction can be used to estimate the variance components or adaptively select the smoothing parameters in any of the three settings. |
Author | Maldonado, Yolanda Muñoz |
Author_xml | – sequence: 1 givenname: Yolanda Muñoz surname: Maldonado fullname: Maldonado, Yolanda Muñoz |
BookMark | eNqFyrEKwjAQgOFDKtiqjyDkAQycSW3aWRQHC4LuJdATUmqiuQrq0-vg7vQP359B4oOnEaRKq1Lq0uQJpGjySqqVwQlkzB1iocrCpFDV7kmtqENLPS_FMfBA0YUoarKehfWtOJK3vXt_rwNZHuTp_rCReAbji-2Z5r9OYbHbnjd72fEQYnOL7mrjq9Go1oi50v_8A8MKNIU |
ContentType | Journal Article |
Copyright | Copyright 2009 Institute of Mathematical Statistics |
Copyright_xml | – notice: Copyright 2009 Institute of Mathematical Statistics |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2328-3874 |
EndPage | 236 |
ExternalDocumentID | 30250042 |
GroupedDBID | 2AX AAKDD AAKYL ABBHK ABFAN ABQDR ABXSQ ABYWD ACIPV ACMTB ACTMH ADODI ADULT AELLO AELPN AEUPB AFBOV AFFOW AFVYC AFXKK AKBRZ ALMA_UNASSIGNED_HOLDINGS AS~ BDTQF BHOJU DQDLB DSRWC ECEWR EFSUC FEDTE GIFXF GR0 HQ6 HVGLF JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST KQ8 OK1 RBV RNS RPE SA0 TR2 WS9 |
ID | FETCH-jstor_primary_302500423 |
ISSN | 0749-2170 |
IngestDate | Fri Feb 02 07:02:46 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-jstor_primary_302500423 |
ParticipantIDs | jstor_primary_30250042 |
PublicationCentury | 2000 |
PublicationDate | 20090101 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 1 year: 2009 text: 20090101 day: 1 |
PublicationDecade | 2000 |
PublicationTitle | Lecture notes-monograph series |
PublicationYear | 2009 |
Publisher | Institute of Mathematical Statistics |
Publisher_xml | – name: Institute of Mathematical Statistics |
SSID | ssj0062867 |
Score | 3.4462228 |
Snippet | This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and... |
SourceID | jstor |
SourceType | Publisher |
StartPage | 216 |
SubjectTerms | Bayesian networks Coefficients Confidence interval Data smoothing Estimation methods Estimators Kalman filters Matrices Maximum likelihood estimation Modeling |
Title | Mixed Models, Posterior Means and Penalized Least-Squares |
URI | https://www.jstor.org/stable/30250042 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA62Jz2Ir-KrkoO3Guk26T6OKkrRriBWqKeS7GahUHa1tiD99c4kdR-lgnoJS3bJJvlg8iUz84WQc5UEEVdRzJTwBWxQPMlUoDXjcTdxhO74vjYBso9u70XcD7vD4npLk10yU5fRYm1eyX9QhTrAFbNk_4Bs3ihUwDPgCyUgDOWvMA7Hn8AX8TqzidXbx4yN6ThDaR5YgmwmgEaqvYDv-nhND3t-n2PKUZmU9pd-hDQD3smg91bGuoVjKEIMQzmJgbbH5mz1NcOISNkK5-hpv3ayReX4IFg5PqiEJIS5UiwqkWAogNGKLpkkTwQMNjHWk6JNHVAyHxV6RdmmWtHp3Ci6pfW1w1ekr-1iilwMDEiN1LiDoZkPT7k3CLNnPSunav9ejR01TGCwQ7aXFJ5eWTx2yYZO98hWMaqPfRIYZKhF5oLmuFCDC4WpozkutILLAWne3Q5uesz8evRmxUBG3x3nDVJPs1QfEioi6QVOx5U-T0TitmXUVkLGquuqKOK-PiKN9W0c__TihGwW2J2S-mw6100gQzN1ZmbqC-p6FLA |
link.rule.ids | 315,783,787 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Models%2C+Posterior+Means+and+Penalized+Least-Squares&rft.jtitle=Lecture+notes-monograph+series&rft.au=Maldonado%2C+Yolanda+Mu%C3%B1oz&rft.date=2009-01-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=0749-2170&rft.eissn=2328-3874&rft.volume=57&rft.spage=216&rft.epage=236&rft.externalDocID=30250042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-2170&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-2170&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-2170&client=summon |