Mixed Models, Posterior Means and Penalized Least-Squares

This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/...

Full description

Saved in:
Bibliographic Details
Published inLecture notes-monograph series Vol. 57; pp. 216 - 236
Main Author Maldonado, Yolanda Muñoz
Format Journal Article
LanguageEnglish
Published Institute of Mathematical Statistics 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/or posterior analysis of certain Gaussian signal-plus-noise models is examined in a more general setting. These connections allow for the application of an efficient, linear time algorithm, to estimate parameters, compute random effects predictions and evaluate likelihoods in a large class of model scenarios. We also show that the methods of generalized cross-validation, restricted maximum likelihood and unbiased risk prediction can be used to estimate the variance components or adaptively select the smoothing parameters in any of the three settings.
AbstractList This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and Penalized Least-squares. Extension of classical results on the equivalence for smoothing spline estimators and best linear unbiased prediction and/or posterior analysis of certain Gaussian signal-plus-noise models is examined in a more general setting. These connections allow for the application of an efficient, linear time algorithm, to estimate parameters, compute random effects predictions and evaluate likelihoods in a large class of model scenarios. We also show that the methods of generalized cross-validation, restricted maximum likelihood and unbiased risk prediction can be used to estimate the variance components or adaptively select the smoothing parameters in any of the three settings.
Author Maldonado, Yolanda Muñoz
Author_xml – sequence: 1
  givenname: Yolanda Muñoz
  surname: Maldonado
  fullname: Maldonado, Yolanda Muñoz
BookMark eNqFyrEKwjAQgOFDKtiqjyDkAQycSW3aWRQHC4LuJdATUmqiuQrq0-vg7vQP359B4oOnEaRKq1Lq0uQJpGjySqqVwQlkzB1iocrCpFDV7kmtqENLPS_FMfBA0YUoarKehfWtOJK3vXt_rwNZHuTp_rCReAbji-2Z5r9OYbHbnjd72fEQYnOL7mrjq9Go1oi50v_8A8MKNIU
ContentType Journal Article
Copyright Copyright 2009 Institute of Mathematical Statistics
Copyright_xml – notice: Copyright 2009 Institute of Mathematical Statistics
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2328-3874
EndPage 236
ExternalDocumentID 30250042
GroupedDBID 2AX
AAKDD
AAKYL
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ACIPV
ACMTB
ACTMH
ADODI
ADULT
AELLO
AELPN
AEUPB
AFBOV
AFFOW
AFVYC
AFXKK
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
AS~
BDTQF
BHOJU
DQDLB
DSRWC
ECEWR
EFSUC
FEDTE
GIFXF
GR0
HQ6
HVGLF
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
KQ8
OK1
RBV
RNS
RPE
SA0
TR2
WS9
ID FETCH-jstor_primary_302500423
ISSN 0749-2170
IngestDate Fri Feb 02 07:02:46 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-jstor_primary_302500423
ParticipantIDs jstor_primary_30250042
PublicationCentury 2000
PublicationDate 20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 1
  year: 2009
  text: 20090101
  day: 1
PublicationDecade 2000
PublicationTitle Lecture notes-monograph series
PublicationYear 2009
Publisher Institute of Mathematical Statistics
Publisher_xml – name: Institute of Mathematical Statistics
SSID ssj0062867
Score 3.4462228
Snippet This paper reviews the connections between estimators that derive from three different modeling methodologies: Mixed-effects models, Bayesian models and...
SourceID jstor
SourceType Publisher
StartPage 216
SubjectTerms Bayesian networks
Coefficients
Confidence interval
Data smoothing
Estimation methods
Estimators
Kalman filters
Matrices
Maximum likelihood estimation
Modeling
Title Mixed Models, Posterior Means and Penalized Least-Squares
URI https://www.jstor.org/stable/30250042
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA62Jz2Ir-KrkoO3Guk26T6OKkrRriBWqKeS7GahUHa1tiD99c4kdR-lgnoJS3bJJvlg8iUz84WQc5UEEVdRzJTwBWxQPMlUoDXjcTdxhO74vjYBso9u70XcD7vD4npLk10yU5fRYm1eyX9QhTrAFbNk_4Bs3ihUwDPgCyUgDOWvMA7Hn8AX8TqzidXbx4yN6ThDaR5YgmwmgEaqvYDv-nhND3t-n2PKUZmU9pd-hDQD3smg91bGuoVjKEIMQzmJgbbH5mz1NcOISNkK5-hpv3ayReX4IFg5PqiEJIS5UiwqkWAogNGKLpkkTwQMNjHWk6JNHVAyHxV6RdmmWtHp3Ci6pfW1w1ekr-1iilwMDEiN1LiDoZkPT7k3CLNnPSunav9ejR01TGCwQ7aXFJ5eWTx2yYZO98hWMaqPfRIYZKhF5oLmuFCDC4WpozkutILLAWne3Q5uesz8evRmxUBG3x3nDVJPs1QfEioi6QVOx5U-T0TitmXUVkLGquuqKOK-PiKN9W0c__TihGwW2J2S-mw6100gQzN1ZmbqC-p6FLA
link.rule.ids 315,783,787
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+Models%2C+Posterior+Means+and+Penalized+Least-Squares&rft.jtitle=Lecture+notes-monograph+series&rft.au=Maldonado%2C+Yolanda+Mu%C3%B1oz&rft.date=2009-01-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=0749-2170&rft.eissn=2328-3874&rft.volume=57&rft.spage=216&rft.epage=236&rft.externalDocID=30250042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-2170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-2170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-2170&client=summon