High precision numerical approach for Davey–Stewartson II type equations for Schwartz class initial data

We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equations, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence an...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 476; no. 2239; pp. 1 - 17
Main Authors Klein, Christian, McLaughlin, Ken, Stoilov, Nikola
Format Journal Article
LanguageEnglish
Published Royal Society 01.07.2020
Online AccessGet full text

Cover

Loading…
Abstract We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equations, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll’s composite Runge–Kutta method for the time dependence. Since DS equations are non-local, nonlinear Schrödinger equations with a singular symbol for the non-locality, standard Fourier methods in practice only reach accuracy of the order of 10−6 or less for typical examples. This was previously demonstrated for the defocusing integrable case by comparison with a numerical approach for DS II via inverse scattering. By applying a regularization to the singular symbol, originally developed for D-bar problems, the presented code is shown to reach machine precision. The code can treat integrable and non-integrable DS II equations. Moreover, it has the same numerical complexity as existing codes for DS II. Several examples for the integrable defocusing DS II equation are discussed as test cases. In an appendix by C. Kalla, a doubly periodic solution to the defocusing DS II equation is presented, providing a test for direct DS codes based on Fourier methods.
AbstractList We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equations, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll’s composite Runge–Kutta method for the time dependence. Since DS equations are non-local, nonlinear Schrödinger equations with a singular symbol for the non-locality, standard Fourier methods in practice only reach accuracy of the order of 10−6 or less for typical examples. This was previously demonstrated for the defocusing integrable case by comparison with a numerical approach for DS II via inverse scattering. By applying a regularization to the singular symbol, originally developed for D-bar problems, the presented code is shown to reach machine precision. The code can treat integrable and non-integrable DS II equations. Moreover, it has the same numerical complexity as existing codes for DS II. Several examples for the integrable defocusing DS II equation are discussed as test cases. In an appendix by C. Kalla, a doubly periodic solution to the defocusing DS II equation is presented, providing a test for direct DS codes based on Fourier methods.
Author Klein, Christian
McLaughlin, Ken
Stoilov, Nikola
Author_xml – sequence: 1
  givenname: Christian
  surname: Klein
  fullname: Klein, Christian
– sequence: 2
  givenname: Ken
  surname: McLaughlin
  fullname: McLaughlin, Ken
– sequence: 3
  givenname: Nikola
  surname: Stoilov
  fullname: Stoilov, Nikola
BookMark eNqFjEsKwjAURYMo-F2C8DZQ6M_WjP2gY53LI0abUpOYF5U6cg_u0JVYxbmje-Cee_usrY2WLdaL0jwKYp5m7YaTLA0mYRx1WZ-oDMOQT6Z5j5UrdSzAOikUKaNBX07SKYEVoLXOoCjgYBzM8Srr1-O58fKGzlNjrtfgaytBni_omyl9xY0oPsIdRIVEoLTyqjnbo8ch6xywIjn65YCNl4vtbBWU5I3bWadO6OpdnPGc8yxJ_vVv_n5I4w
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1471-2946
EndPage 17
ExternalDocumentID 26979963
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
ABFAN
ABPLY
ABTLG
ABXSQ
ABXXB
ABYWD
ACGFO
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
AEUPB
AFVYC
ALMA_UNASSIGNED_HOLDINGS
BTFSW
EBS
FRP
HH5
JLS
JSG
JST
KQ8
MRS
MV1
NSAHA
OK1
OP1
RHF
RNS
RRY
TR2
V1E
W8F
XSW
YF5
~02
ID FETCH-jstor_primary_269799633
ISSN 1364-5021
IngestDate Tue Feb 20 10:56:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2239
Language English
LinkModel OpenURL
MergedId FETCHMERGED-jstor_primary_269799633
ParticipantIDs jstor_primary_26979963
PublicationCentury 2000
PublicationDate 20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200701
  day: 1
PublicationDecade 2020
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationYear 2020
Publisher Royal Society
Publisher_xml – name: Royal Society
SSID ssj0009587
Score 4.6802244
Snippet We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equations, treating initial data from the Schwartz class of smooth,...
SourceID jstor
SourceType Publisher
StartPage 1
Title High precision numerical approach for Davey–Stewartson II type equations for Schwartz class initial data
URI https://www.jstor.org/stable/26979963
Volume 476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0AJz0YQYlfmD140DQlQEtLj8RoqIjRgAk30m4XQUmr0JrIyf9g_IP-End2tx8aTNTLptlumrbzujudfTMPoaMGoV7TpaZqumNd1U1TY9-czpqGZxHTI7TO5Xx6V0bnVr8YNoe53HuGtRSFbpUsV-aV_MeqrI_ZFbJk_2DZ5KKsgx0z-7KWWZi1v7IxkDQgy1_I5Ch-JLZfZkmlcE4iBMX4l5jUoPUhWjYPQXjQtkUElj5FkhAHw_tkAgOWCgHHWpkCuwh2ckQSW-LJXicr3yLmGYhQhOSBVpW2yAWKy8JyZQEZSRHHELOnaT1ERa7G6fbSTCpxigoIGSD3yKUT3U2k2Hw3TWfrh8F0FjwLjD8EMycb1WC_sDEDNqZDZW44Mz1rhq42ayKnukpFH1te1YYlA5lyTteFqIwEL3OBrMwkXc-s9iJx9FvJ7YYBm52Glkd5rQ480e5NK1PJmasuJrfylcjK3ZLBJtqQ_xO4LcBRRDnql9B6-tYXJVSU8_cCH8si4ydb6B6wgxPs4AQ7OMYOZmDAHDsfr28parBtY0ANTlDDB8aowRw1WKIGA2q2UeX8bHDaUfkDjB5FfZNR_PhaGRX8wKc7CBukZbpGbey4nqmDU2_VKXNtCIXqPSZxdlF59TX2fjqxj9ZSux-gQjiPaIX5d6F7yN_3J1JGYEM
link.rule.ids 315,783,787
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+precision+numerical+approach+for+Davey%E2%80%93Stewartson+II+type+equations+for+Schwartz+class+initial+data&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Klein%2C+Christian&rft.au=McLaughlin%2C+Ken&rft.au=Stoilov%2C+Nikola&rft.date=2020-07-01&rft.pub=Royal+Society&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=476&rft.issue=2239&rft.spage=1&rft.epage=17&rft.externalDocID=26979963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon