Random matrix improved covariance estimation for a large class of metrics This article is an updated version of: Tiomoko M, Couillet R, Bouchard F and Ginolhac G 2019 Random matrix improved covariance estimation for a large class of metrics Proc. Machine Learning Research vol 97 pp 6254-63

Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estima...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical mechanics Vol. 2020; no. 12
Main Authors Tiomoko, Malik, Bouchard, Florent, Ginolhac, Guillaume, Couillet, Romain
Format Journal Article
LanguageEnglish
Published IOP Publishing and SISSA 21.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estimate and to compete with state-of-the-art methods, while at the same time being computationally simpler and faster. Applications to linear and quadratic discriminant analyses also show significant gains, therefore suggesting a practical relevance for statistical machine learning.
AbstractList Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estimate and to compete with state-of-the-art methods, while at the same time being computationally simpler and faster. Applications to linear and quadratic discriminant analyses also show significant gains, therefore suggesting a practical relevance for statistical machine learning.
Author Tiomoko, Malik
Couillet, Romain
Ginolhac, Guillaume
Bouchard, Florent
Author_xml – sequence: 1
  givenname: Malik
  surname: Tiomoko
  fullname: Tiomoko, Malik
  email: malik.tiomoko@gipsa-lab.grenoble-inp.fr
  organization: University Grenoble-Alpes GIPSA-lab, France
– sequence: 2
  givenname: Florent
  surname: Bouchard
  fullname: Bouchard, Florent
  organization: University Savoie Mont-Blanc LISTIC, France
– sequence: 3
  givenname: Guillaume
  surname: Ginolhac
  fullname: Ginolhac, Guillaume
  organization: University Savoie Mont-Blanc LISTIC, France
– sequence: 4
  givenname: Romain
  surname: Couillet
  fullname: Couillet, Romain
  organization: University Grenoble-Alpes GIPSA-lab, France
BookMark eNqtkE9PwzAMxQsCiQ24c7Q470-adlvHkYnBgUlo2j0yabpmpHGVpBUfn1QgPsEkS3569s-y3ji5smRVkjykbJayopinq5xPF_mymOOnxIpfJqN_6yYZe39iLOMsL0YXj3u0JTXQYHD6G3TTOupVCZJ6dBqtVKB80HGsyUJFDhAMuqMCadB7oAoaFVHp4VBrD-iClkbBIC10bYkhXuuV8wNP1RMcNDX0RbCbwIY6bYwKsJ_AM3WyRlfCNoIlvGpLpkYJr8BZuobzvfnhSM5gh7LWVsG7Qme1PcJe-ShlDT0ZWK-gbWHJF_l0md0l1xUar-7_-m0y2b4cNm9TTa04UedsdEXKxJC9GIIWQ9DiN_vsLOsnHzAIznjEeKycpaloyyr7AWn5oT4
CODEN JSMTC6
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd and SISSA Medialab srl
Copyright_xml – notice: 2020 IOP Publishing Ltd and SISSA Medialab srl
DOI 10.1088/1742-5468/abcaf2
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Random matrix improved covariance estimation for a large class of metrics
EISSN 1742-5468
ExternalDocumentID jstatabcaf2
GroupedDBID 1JI
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RNS
ROL
RPA
S3P
SY9
VSI
W28
XPP
ZMT
ID FETCH-iop_journals_10_1088_1742_5468_abcaf23
IEDL.DBID IOP
IngestDate Wed Aug 21 03:38:01 EDT 2024
Fri Jan 22 06:57:35 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-iop_journals_10_1088_1742_5468_abcaf23
Notes JSTAT_012P_0920
PageCount 18
ParticipantIDs iop_journals_10_1088_1742_5468_abcaf2
PublicationCentury 2000
PublicationDate 20201221
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 20201221
  day: 21
PublicationDecade 2020
PublicationTitle Journal of statistical mechanics
PublicationTitleAbbrev JSTAT
PublicationTitleAlternate J. Stat. Mech
PublicationYear 2020
Publisher IOP Publishing and SISSA
Publisher_xml – name: IOP Publishing and SISSA
SSID ssj0032048
Score 4.364071
Snippet Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and...
SourceID iop
SourceType Enrichment Source
Publisher
SubjectTerms machine learning
Title Random matrix improved covariance estimation for a large class of metrics This article is an updated version of: Tiomoko M, Couillet R, Bouchard F and Ginolhac G 2019 Random matrix improved covariance estimation for a large class of metrics Proc. Machine Learning Research vol 97 pp 6254-63
URI https://iopscience.iop.org/article/10.1088/1742-5468/abcaf2
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1FEbz4LX7zEL01tenWNNGTivUDqiIVPAghyW60arPBNiL-emeSVEQ8iAg57GF3Mwyb2Te7b16E2LI1i3TZoWXHyrEaqhZbrtKR5eowCG3H00pyvXP7wjm9aZzf7t6Oiv3PWhiTlqG_Ss1CKLhwYUmIc3cIQ7N8v-PuBGEUxBR_xyV9Kpx5nV1eDcOwZEXa8l7yp1G0l9ALvuwlrWlxN7SioJA8VbNBWI3evwk0_tHMGTFVYkwcFF1nxahO5sREzvWM-vMjm9dBokwPPVbnf0M3P1bQCpF5pcSZVwFYeqOoaQSBWgR4ZsI4IobaMDF6_B-uqI_OQ7eP0iRwM0GW8hmCwmtxEEe999Dpmp55MmhXcGQyrj4c4LqCQ5PlRV9o0UCFk25inh-CCCcgvODh_8zkaogq2jlvVKOUlL3HkHUICtHwmkhTUJ7WsBy5ICqt487RqUVu98vPre_nN-mu67PPffa5X_hcLoqxxCR6SYBwai3wwsCWymloNw6VdJoEEGRNeW5TNpfF9q-m_N7vkQu__Dqhbt-u00P5qu2nKl755XyrYpIHM0Ombq-JscFLptcJ5wzCjXw9fwBqyQEF
link.rule.ids 315,783,787,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT-MwFPawCMRlFhaxzPJpBLembZqSJtwYZspaqKoicTNJ7ECBxhFt0Ihfz3tJKiHEAQmkHHywnafn7bP9vs9CbNqaRbrs0LJj5VpNVY8tT-nI8nQYhLbra-Uw37lz6h6cN48uti_Kd05zLoxJy6m_SslCKLhwYRkQ59UIQ7N8v-vVgjAK4kYtVfG0mKWRu83i-Ydn3clU7LAqbXk3-VpJWk_oJ8_Wk_YXcTmxpAgjua1m47AaPb4QaXyHqV_F5xJrYrfI_k1M6WRRzOUxn9Fo6dPvXpAoM8SQVfr_Y5AfL2iFyDzQBpp7A1iCo-A2gsAtAtxx4DgihtwwMYb8Hlc0Qv96MEJpFjiZIEv5LEHhoTiQo9w76A_M0NwadCrYMxmzEMfoVfDHZDn5C20qqLA_SMzddRBhH4QbfHycmcyKqKKTx49qlNKyV5hEH4KmavgtpClov9a0XGdZVNr_-nsHFrlelsNuJPMbdc-T7HfJfpeF350VMZOYRK8KEF6tB34Y2I5ym9qLQ-W4LQIKTl35XstprYmtN1X5Mt8NE8Bkg9C3tBv00b7VltTc62-s75eY7_5ty5PD0-MNscD1cNBMw_4uZsb3mf5B0Gcc_sy79xOXOAZl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+matrix+improved+covariance+estimation+for+a+large+class+of+metrics+This+article+is+an+updated+version+of%3A+Tiomoko+M%2C+Couillet+R%2C+Bouchard+F+and+Ginolhac+G+2019+Random+matrix+improved+covariance+estimation+for+a+large+class+of+metrics+Proc.+Machine+Learning+Research+vol+97+pp+6254-63&rft.jtitle=Journal+of+statistical+mechanics&rft.au=Tiomoko%2C+Malik&rft.au=Bouchard%2C+Florent&rft.au=Ginolhac%2C+Guillaume&rft.au=Couillet%2C+Romain&rft.date=2020-12-21&rft.pub=IOP+Publishing+and+SISSA&rft.eissn=1742-5468&rft.volume=2020&rft.issue=12&rft_id=info:doi/10.1088%2F1742-5468%2Fabcaf2&rft.externalDocID=jstatabcaf2