Random matrix improved covariance estimation for a large class of metrics This article is an updated version of: Tiomoko M, Couillet R, Bouchard F and Ginolhac G 2019 Random matrix improved covariance estimation for a large class of metrics Proc. Machine Learning Research vol 97 pp 6254-63
Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estima...
Saved in:
Published in | Journal of statistical mechanics Vol. 2020; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing and SISSA
21.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estimate and to compete with state-of-the-art methods, while at the same time being computationally simpler and faster. Applications to linear and quadratic discriminant analyses also show significant gains, therefore suggesting a practical relevance for statistical machine learning. |
---|---|
AbstractList | Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and precision matrix estimation method for a wide family of metrics. This method is shown to largely outperform the sample covariance matrix estimate and to compete with state-of-the-art methods, while at the same time being computationally simpler and faster. Applications to linear and quadratic discriminant analyses also show significant gains, therefore suggesting a practical relevance for statistical machine learning. |
Author | Tiomoko, Malik Couillet, Romain Ginolhac, Guillaume Bouchard, Florent |
Author_xml | – sequence: 1 givenname: Malik surname: Tiomoko fullname: Tiomoko, Malik email: malik.tiomoko@gipsa-lab.grenoble-inp.fr organization: University Grenoble-Alpes GIPSA-lab, France – sequence: 2 givenname: Florent surname: Bouchard fullname: Bouchard, Florent organization: University Savoie Mont-Blanc LISTIC, France – sequence: 3 givenname: Guillaume surname: Ginolhac fullname: Ginolhac, Guillaume organization: University Savoie Mont-Blanc LISTIC, France – sequence: 4 givenname: Romain surname: Couillet fullname: Couillet, Romain organization: University Grenoble-Alpes GIPSA-lab, France |
BookMark | eNqtkE9PwzAMxQsCiQ24c7Q470-adlvHkYnBgUlo2j0yabpmpHGVpBUfn1QgPsEkS3569s-y3ji5smRVkjykbJayopinq5xPF_mymOOnxIpfJqN_6yYZe39iLOMsL0YXj3u0JTXQYHD6G3TTOupVCZJ6dBqtVKB80HGsyUJFDhAMuqMCadB7oAoaFVHp4VBrD-iClkbBIC10bYkhXuuV8wNP1RMcNDX0RbCbwIY6bYwKsJ_AM3WyRlfCNoIlvGpLpkYJr8BZuobzvfnhSM5gh7LWVsG7Qme1PcJe-ShlDT0ZWK-gbWHJF_l0md0l1xUar-7_-m0y2b4cNm9TTa04UedsdEXKxJC9GIIWQ9DiN_vsLOsnHzAIznjEeKycpaloyyr7AWn5oT4 |
CODEN | JSMTC6 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd and SISSA Medialab srl |
Copyright_xml | – notice: 2020 IOP Publishing Ltd and SISSA Medialab srl |
DOI | 10.1088/1742-5468/abcaf2 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Random matrix improved covariance estimation for a large class of metrics |
EISSN | 1742-5468 |
ExternalDocumentID | jstatabcaf2 |
GroupedDBID | 1JI 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADWVK AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RNS ROL RPA S3P SY9 VSI W28 XPP ZMT |
ID | FETCH-iop_journals_10_1088_1742_5468_abcaf23 |
IEDL.DBID | IOP |
IngestDate | Wed Aug 21 03:38:01 EDT 2024 Fri Jan 22 06:57:35 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-iop_journals_10_1088_1742_5468_abcaf23 |
Notes | JSTAT_012P_0920 |
PageCount | 18 |
ParticipantIDs | iop_journals_10_1088_1742_5468_abcaf2 |
PublicationCentury | 2000 |
PublicationDate | 20201221 |
PublicationDateYYYYMMDD | 2020-12-21 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201221 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Journal of statistical mechanics |
PublicationTitleAbbrev | JSTAT |
PublicationTitleAlternate | J. Stat. Mech |
PublicationYear | 2020 |
Publisher | IOP Publishing and SISSA |
Publisher_xml | – name: IOP Publishing and SISSA |
SSID | ssj0032048 |
Score | 4.364071 |
Snippet | Relying on recent advances in statistical estimation of covariance distances based on random matrix theory, this article proposes an improved covariance and... |
SourceID | iop |
SourceType | Enrichment Source Publisher |
SubjectTerms | machine learning |
Title | Random matrix improved covariance estimation for a large class of metrics This article is an updated version of: Tiomoko M, Couillet R, Bouchard F and Ginolhac G 2019 Random matrix improved covariance estimation for a large class of metrics Proc. Machine Learning Research vol 97 pp 6254-63 |
URI | https://iopscience.iop.org/article/10.1088/1742-5468/abcaf2 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1FEbz4LX7zEL01tenWNNGTivUDqiIVPAghyW60arPBNiL-emeSVEQ8iAg57GF3Mwyb2Te7b16E2LI1i3TZoWXHyrEaqhZbrtKR5eowCG3H00pyvXP7wjm9aZzf7t6Oiv3PWhiTlqG_Ss1CKLhwYUmIc3cIQ7N8v-PuBGEUxBR_xyV9Kpx5nV1eDcOwZEXa8l7yp1G0l9ALvuwlrWlxN7SioJA8VbNBWI3evwk0_tHMGTFVYkwcFF1nxahO5sREzvWM-vMjm9dBokwPPVbnf0M3P1bQCpF5pcSZVwFYeqOoaQSBWgR4ZsI4IobaMDF6_B-uqI_OQ7eP0iRwM0GW8hmCwmtxEEe999Dpmp55MmhXcGQyrj4c4LqCQ5PlRV9o0UCFk25inh-CCCcgvODh_8zkaogq2jlvVKOUlL3HkHUICtHwmkhTUJ7WsBy5ICqt487RqUVu98vPre_nN-mu67PPffa5X_hcLoqxxCR6SYBwai3wwsCWymloNw6VdJoEEGRNeW5TNpfF9q-m_N7vkQu__Dqhbt-u00P5qu2nKl755XyrYpIHM0Ombq-JscFLptcJ5wzCjXw9fwBqyQEF |
link.rule.ids | 315,783,787,27936,27937,38877,53854 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT-MwFPawCMRlFhaxzPJpBLembZqSJtwYZspaqKoicTNJ7ECBxhFt0Ihfz3tJKiHEAQmkHHywnafn7bP9vs9CbNqaRbrs0LJj5VpNVY8tT-nI8nQYhLbra-Uw37lz6h6cN48uti_Kd05zLoxJy6m_SslCKLhwYRkQ59UIQ7N8v-vVgjAK4kYtVfG0mKWRu83i-Ydn3clU7LAqbXk3-VpJWk_oJ8_Wk_YXcTmxpAgjua1m47AaPb4QaXyHqV_F5xJrYrfI_k1M6WRRzOUxn9Fo6dPvXpAoM8SQVfr_Y5AfL2iFyDzQBpp7A1iCo-A2gsAtAtxx4DgihtwwMYb8Hlc0Qv96MEJpFjiZIEv5LEHhoTiQo9w76A_M0NwadCrYMxmzEMfoVfDHZDn5C20qqLA_SMzddRBhH4QbfHycmcyKqKKTx49qlNKyV5hEH4KmavgtpClov9a0XGdZVNr_-nsHFrlelsNuJPMbdc-T7HfJfpeF350VMZOYRK8KEF6tB34Y2I5ym9qLQ-W4LQIKTl35XstprYmtN1X5Mt8NE8Bkg9C3tBv00b7VltTc62-s75eY7_5ty5PD0-MNscD1cNBMw_4uZsb3mf5B0Gcc_sy79xOXOAZl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+matrix+improved+covariance+estimation+for+a+large+class+of+metrics+This+article+is+an+updated+version+of%3A+Tiomoko+M%2C+Couillet+R%2C+Bouchard+F+and+Ginolhac+G+2019+Random+matrix+improved+covariance+estimation+for+a+large+class+of+metrics+Proc.+Machine+Learning+Research+vol+97+pp+6254-63&rft.jtitle=Journal+of+statistical+mechanics&rft.au=Tiomoko%2C+Malik&rft.au=Bouchard%2C+Florent&rft.au=Ginolhac%2C+Guillaume&rft.au=Couillet%2C+Romain&rft.date=2020-12-21&rft.pub=IOP+Publishing+and+SISSA&rft.eissn=1742-5468&rft.volume=2020&rft.issue=12&rft_id=info:doi/10.1088%2F1742-5468%2Fabcaf2&rft.externalDocID=jstatabcaf2 |