A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine

Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categorie...

Full description

Saved in:
Bibliographic Details
Published in2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1 - 10
Main Authors Mellies, Paul-Andre, Zeilberger, Noam
Format Conference Proceeding
LanguageEnglish
Published ACM 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic.
AbstractList Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic.
Author Mellies, Paul-Andre
Zeilberger, Noam
Author_xml – sequence: 1
  givenname: Paul-Andre
  surname: Mellies
  fullname: Mellies, Paul-Andre
  organization: Institut de Recherche en Informatique Fondamentale CNRS, Université Paris Diderot
– sequence: 2
  givenname: Noam
  surname: Zeilberger
  fullname: Zeilberger, Noam
  organization: Institut de Recherche en Informatique Fondamentale CNRS, Université Paris Diderot
BookMark eNp9ybEKwjAUQNEoClbtF7hkcyokbdKko4ri4Ohe0vpKIzUpL1Xp34vg7HTh3CWZOe9gQuJCaS4ky0RW8HxKolQqmUiZ6gWJQ7gzxlKudMF4RPY7WtnGVmgG653pKELtXRjwWX-B-oZezPsFCNtAe4TQgmloO_aAN18PaB2sybwxXYD41xXZnI7XwzmxAFD2aB8Gx1JLlQuhs__3A54ZOTE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
ESBDL
RIE
RIO
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Open Access Journals
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450343916
1450343910
EISSN 2575-5528
EndPage 10
ExternalDocumentID 8576448
Genre orig-research
GroupedDBID --Z
23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-ieee_primary_85764483
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:22 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_85764483
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8576448
ParticipantIDs ieee_primary_8576448
PublicationCentury 2000
PublicationDate 2016-July
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationTitle 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
PublicationTitleAbbrev LICS
PublicationYear 2016
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002178901
ssj0002640
Score 4.008957
Snippet Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Calculus
Cats
Computer languages
Junctions
Semantics
Servers
Terminology
Title A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine
URI https://ieeexplore.ieee.org/document/8576448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauok6lXcQvNi6mrQuRxXHECceFHYbTfqCIrSCHYJ_vS_JVn-wg7fQQ_qgSb_3vXzvC8CxTUSmNemICsEEhQodqVSeRzJ1iCJMmnu3_el9NnmSt7N01oLTpheGiLz4jGI39Gf5RWUWrlR2NuLkmOlEG9oXSoVeraaewqn1SP2QdzDQD3_dmOIBY9yF6epVQSfyGi9qHZvPPy6M_41lE_rfrXn40IDOFrSo3Ibu6m4GXG7VHlxdon6xjguHYh965tu4xWJl8S7_4HVMJ-_oxLD8U7b4zKzUWYbXriewD4PxzeP1JHJhzd-CLcV8GZHYgU5ZlbQLmDi-UIiMRC6kyofaGEosJznKSMVEZQ9662bYX_94ABucLWRBq3oAHY6YDhmRa33kP8UXc-uTAA
link.rule.ids 310,311,783,787,792,793,799,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ3UetBT1dao9WMPJl4Ei7ts4KjGBhUaDzXpjbDLEI0JmEhj4q93dmnxIz14IxxgEljee8ObtwCnhcelUqgczDkJFMyVE_ri0hG-QRSu_cym7ScTGT2J-5k_68B5OwuDiNZ8hq45tP_y80rPTavsIiByTHJiDdaJVweymdZqOypEroPwh8GDoH70a88UCxnjHiTLmzVOkVd3XitXf_7JYfxvNVsw-B7OY48t7GxDB8sd6C13Z2CLxdqH6yumXgqjhpt2H7Pat82LZVXB4uyD3mQ8e2fGDkuf5YI9ky41oeG1mQocwHB8O72JHFNW-tYEU6SLivgudMuqxD1gnlEMOZfIMy7CbKS0Rq8gmhNqEZJU2Yf-qiscrD59AhvRNInT-G7yMIRN4g6yca4eQpeqxyPC51od28fyBU9Jlks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=A+bifibrational+reconstruction+of+Lawvere%27s+presheaf+hyperdoctrine&rft.au=Mellies%2C+Paul-Andre&rft.au=Zeilberger%2C+Noam&rft.date=2016-07-01&rft.pub=ACM&rft.eissn=2575-5528&rft.spage=1&rft.epage=10&rft.externalDocID=8576448