A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine
Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categorie...
Saved in:
Published in | 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic. |
---|---|
AbstractList | Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic. |
Author | Mellies, Paul-Andre Zeilberger, Noam |
Author_xml | – sequence: 1 givenname: Paul-Andre surname: Mellies fullname: Mellies, Paul-Andre organization: Institut de Recherche en Informatique Fondamentale CNRS, Université Paris Diderot – sequence: 2 givenname: Noam surname: Zeilberger fullname: Zeilberger, Noam organization: Institut de Recherche en Informatique Fondamentale CNRS, Université Paris Diderot |
BookMark | eNp9ybEKwjAUQNEoClbtF7hkcyokbdKko4ri4Ohe0vpKIzUpL1Xp34vg7HTh3CWZOe9gQuJCaS4ky0RW8HxKolQqmUiZ6gWJQ7gzxlKudMF4RPY7WtnGVmgG653pKELtXRjwWX-B-oZezPsFCNtAe4TQgmloO_aAN18PaB2sybwxXYD41xXZnI7XwzmxAFD2aB8Gx1JLlQuhs__3A54ZOTE |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK ESBDL RIE RIO |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Open Access Journals IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781450343916 1450343910 |
EISSN | 2575-5528 |
EndPage | 10 |
ExternalDocumentID | 8576448 |
Genre | orig-research |
GroupedDBID | --Z 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO ESBDL IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-ieee_primary_85764483 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:22 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_85764483 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8576448 |
ParticipantIDs | ieee_primary_8576448 |
PublicationCentury | 2000 |
PublicationDate | 2016-July |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-July |
PublicationDecade | 2010 |
PublicationTitle | 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) |
PublicationTitleAbbrev | LICS |
PublicationYear | 2016 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssj0002178901 ssj0002640 |
Score | 4.008957 |
Snippet | Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Calculus Cats Computer languages Junctions Semantics Servers Terminology |
Title | A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine |
URI | https://ieeexplore.ieee.org/document/8576448 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauok6lXcQvNi6mrQuRxXHECceFHYbTfqCIrSCHYJ_vS_JVn-wg7fQQ_qgSb_3vXzvC8CxTUSmNemICsEEhQodqVSeRzJ1iCJMmnu3_el9NnmSt7N01oLTpheGiLz4jGI39Gf5RWUWrlR2NuLkmOlEG9oXSoVeraaewqn1SP2QdzDQD3_dmOIBY9yF6epVQSfyGi9qHZvPPy6M_41lE_rfrXn40IDOFrSo3Ibu6m4GXG7VHlxdon6xjguHYh965tu4xWJl8S7_4HVMJ-_oxLD8U7b4zKzUWYbXriewD4PxzeP1JHJhzd-CLcV8GZHYgU5ZlbQLmDi-UIiMRC6kyofaGEosJznKSMVEZQ9662bYX_94ABucLWRBq3oAHY6YDhmRa33kP8UXc-uTAA |
link.rule.ids | 310,311,783,787,792,793,799,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ3UetBT1dao9WMPJl4Ei7ts4KjGBhUaDzXpjbDLEI0JmEhj4q93dmnxIz14IxxgEljee8ObtwCnhcelUqgczDkJFMyVE_ri0hG-QRSu_cym7ScTGT2J-5k_68B5OwuDiNZ8hq45tP_y80rPTavsIiByTHJiDdaJVweymdZqOypEroPwh8GDoH70a88UCxnjHiTLmzVOkVd3XitXf_7JYfxvNVsw-B7OY48t7GxDB8sd6C13Z2CLxdqH6yumXgqjhpt2H7Pat82LZVXB4uyD3mQ8e2fGDkuf5YI9ky41oeG1mQocwHB8O72JHFNW-tYEU6SLivgudMuqxD1gnlEMOZfIMy7CbKS0Rq8gmhNqEZJU2Yf-qiscrD59AhvRNInT-G7yMIRN4g6yca4eQpeqxyPC51od28fyBU9Jlks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+31st+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=A+bifibrational+reconstruction+of+Lawvere%27s+presheaf+hyperdoctrine&rft.au=Mellies%2C+Paul-Andre&rft.au=Zeilberger%2C+Noam&rft.date=2016-07-01&rft.pub=ACM&rft.eissn=2575-5528&rft.spage=1&rft.epage=10&rft.externalDocID=8576448 |