A 5.26 Mflips programmable analogue fuzzy logic controller in a standard CMOS 2.4 /spl mu/ technology
A complete digitally-programmable analogue fuzzy logic controller (FLC) is presented. The design of some new functional blocks and the improvement of others aim towards speed optimisation with a reasonable accuracy, as it is needed in several analogue signal processing applications. A nine-rules, tw...
Saved in:
Published in | 2000 IEEE International Symposium on Circuits and Systems (ISCAS) Vol. 5; pp. 377 - 380 vol.5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A complete digitally-programmable analogue fuzzy logic controller (FLC) is presented. The design of some new functional blocks and the improvement of others aim towards speed optimisation with a reasonable accuracy, as it is needed in several analogue signal processing applications. A nine-rules, two-inputs and one-output prototype was fabricated and successfully tested using a standard CMOS 2.4 /spl mu/ technology showing good agreement with the expected performances, namely: 5.26 Mflips (mega fuzzy logic inferences per second) at the pin terminal (@CL=13 pF), 933 /spl mu/W power consumption per rule (@Vdd=5V) and 5 to 6 bits of precision. Since the circuit is intended for a subsystem embedded in an application chip (@CL/spl les/15 pF) over 8 Mflips may be expected. |
---|---|
ISBN: | 9780780354821 0780354826 |
DOI: | 10.1109/ISCAS.2000.857443 |