Data mining: a scholar dropout predictive model

The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes plac...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Mexican Humanitarian Technology Conference (MHTC) pp. 89 - 93
Main Authors Rodriguez Maya, Noel Enrique, Jimenez Alfaro, Abraham Jorge, Reyes Hernandez, Luis Angel, Suarez Carranza, Brian Alison, Ruiz Garduno, Jhacer Kharen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes place. Data Mining (DM) is a tool that helps to identify hidden patterns through the search of patterns into the data, for example, the creation of models to describe historical data. This research presents a SD predictive model in universities; which is based in a methodology based on DM using as study case, information of the generational cohorts 2010-2015 and 2011-2016 from the Instituto Tecnologico de Zitacuaro. The results showed a predictive model with a precision above 85%. It can be established in other universities with the necessary and pertinent adjustments.
AbstractList The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes place. Data Mining (DM) is a tool that helps to identify hidden patterns through the search of patterns into the data, for example, the creation of models to describe historical data. This research presents a SD predictive model in universities; which is based in a methodology based on DM using as study case, information of the generational cohorts 2010-2015 and 2011-2016 from the Instituto Tecnologico de Zitacuaro. The results showed a predictive model with a precision above 85%. It can be established in other universities with the necessary and pertinent adjustments.
Author Ruiz Garduno, Jhacer Kharen
Jimenez Alfaro, Abraham Jorge
Rodriguez Maya, Noel Enrique
Suarez Carranza, Brian Alison
Reyes Hernandez, Luis Angel
Author_xml – sequence: 1
  givenname: Noel Enrique
  surname: Rodriguez Maya
  fullname: Rodriguez Maya, Noel Enrique
  email: xnrodriguez@itzitacuaro.edu.mx
  organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro, Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico
– sequence: 2
  givenname: Abraham Jorge
  surname: Jimenez Alfaro
  fullname: Jimenez Alfaro, Abraham Jorge
  email: ajja_mx@yahoo.com
  organization: Div. de Ingenieria en Sistemas Computacionales Tecnologico de Estudios Superiores de Ecatepec Av. Tecnologico s/n, Col. Valle de Anahuac, Ecatepec de Morelos Edo. de Mexico, Mexico
– sequence: 3
  givenname: Luis Angel
  surname: Reyes Hernandez
  fullname: Reyes Hernandez, Luis Angel
  organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Orizaba Oriente 9, Emiliano Zapata Sur, 94320 Orizaba, Veracruz, Mexico
– sequence: 4
  givenname: Brian Alison
  surname: Suarez Carranza
  fullname: Suarez Carranza, Brian Alison
  email: brianalisonsuarez@hotmail.com
  organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico
– sequence: 5
  givenname: Jhacer Kharen
  surname: Ruiz Garduno
  fullname: Ruiz Garduno, Jhacer Kharen
  email: jhacerkharen@itzitacuaro.edu.mx
  organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico
BookMark eNrjYmDJy89LZWCQNDTQMzQ0sNT39Qhx1jMyMDTXszAwMDMxMmRk4DI0NbAEsk0NLDgZ9F0SSxIVcjPzMvPSrRQSFYqTM_JzEosUUoryC_JLSxQKilJTMpNLMstSFXLzU1JzeBhY0xJzilN5oTQ3g7Sba4izh25mampqfEFRZm5iUWU81C5j_LIAeJUwiA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MHTC.2017.8006421
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISBN 1509064508
9781509064502
EndPage 93
ExternalDocumentID 8006421
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-ieee_primary_80064213
IEDL.DBID RIE
IngestDate Wed May 01 11:50:51 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_80064213
ParticipantIDs ieee_primary_8006421
PublicationCentury 2000
PublicationDate 2017-March
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-March
PublicationDecade 2010
PublicationTitle 2017 IEEE Mexican Humanitarian Technology Conference (MHTC)
PublicationTitleAbbrev MHTC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 3.3139036
Snippet The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects...
SourceID ieee
SourceType Publisher
StartPage 89
SubjectTerms Computational modeling
Data mining
Data models
Economics
predictive model
Predictive models
scholar dropout
Software
Title Data mining: a scholar dropout predictive model
URI https://ieeexplore.ieee.org/document/8006421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21XWCC0iKgUHlgJB-0Tp2wllZRpSCGInWr_HFZEGlVnIVfT85Ji0Ad2CzL8lk3-Pl8790B3Cd5FCshueck7lyIsVfFWcRpiI1AI0PtAsXsZZK-8cUqWrXg4aCFQURHPkOfhi6Xbza6pK-yIA6dLrMNbZEktVarSVQ-hkmQpcspcbWE36z71TDF4cX8DLK9pZom8u6XVvn6608Rxv8e5Rz6P8o89nrAnC60sLiAk726-LMHwbO0kn24tg9PTLImeGWGuiGUlm13lJmhO465Jjh9GMxny2nqkfH1tq49sW7sji-hU2wKvAI2Mrms3m0oEDXHMJeTyCg94rnQFZar-Bp6x3a4OT49gFNyYc2yuoWO3ZV4V8GuVUPn728ucYgc
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMpSpQItoy8MDI3nQOnXKWqgCNBVDkLpFflwWRFoVZ-HXEztpEagDm2VZPusGf3e-7_MB3EyyIBSMU8dK3CljI6fMswynIVQMFfelTRTjxTh6o8_LYNmA250WBhEt-QxdM7S1fLWShXkq80Lf6jIP4DAwcUWl1qpLlXf-xIujZGrYWsytV_5qmWIRY9aGeGurIoq8u4UWrvz68w3jfw9zDN0fbR553aHOCTQwP4XWVl_82QHvgWtOPmzjh3vCSZ2-EmX6IRSarDemNmNuOWLb4HRhMHtMppFjjKfr6veJtLY7OoNmvsrxHMhQZbyM3JAhSop-xseBEnJIMyZLNBdhDzr7dujvn76GVpTE83T-tHgZwJFxZ8W5uoCm3hR4WYKwFlfW999_L4tp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Mexican+Humanitarian+Technology+Conference+%28MHTC%29&rft.atitle=Data+mining%3A+a+scholar+dropout+predictive+model&rft.au=Rodriguez+Maya%2C+Noel+Enrique&rft.au=Jimenez+Alfaro%2C+Abraham+Jorge&rft.au=Reyes+Hernandez%2C+Luis+Angel&rft.au=Suarez+Carranza%2C+Brian+Alison&rft.date=2017-03-01&rft.pub=IEEE&rft.spage=89&rft.epage=93&rft_id=info:doi/10.1109%2FMHTC.2017.8006421&rft.externalDocID=8006421