Data mining: a scholar dropout predictive model
The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes plac...
Saved in:
Published in | 2017 IEEE Mexican Humanitarian Technology Conference (MHTC) pp. 89 - 93 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes place. Data Mining (DM) is a tool that helps to identify hidden patterns through the search of patterns into the data, for example, the creation of models to describe historical data. This research presents a SD predictive model in universities; which is based in a methodology based on DM using as study case, information of the generational cohorts 2010-2015 and 2011-2016 from the Instituto Tecnologico de Zitacuaro. The results showed a predictive model with a precision above 85%. It can be established in other universities with the necessary and pertinent adjustments. |
---|---|
AbstractList | The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects among others. There are different factors that affect students to leave their studies and vary according to the place where the action takes place. Data Mining (DM) is a tool that helps to identify hidden patterns through the search of patterns into the data, for example, the creation of models to describe historical data. This research presents a SD predictive model in universities; which is based in a methodology based on DM using as study case, information of the generational cohorts 2010-2015 and 2011-2016 from the Instituto Tecnologico de Zitacuaro. The results showed a predictive model with a precision above 85%. It can be established in other universities with the necessary and pertinent adjustments. |
Author | Ruiz Garduno, Jhacer Kharen Jimenez Alfaro, Abraham Jorge Rodriguez Maya, Noel Enrique Suarez Carranza, Brian Alison Reyes Hernandez, Luis Angel |
Author_xml | – sequence: 1 givenname: Noel Enrique surname: Rodriguez Maya fullname: Rodriguez Maya, Noel Enrique email: xnrodriguez@itzitacuaro.edu.mx organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro, Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico – sequence: 2 givenname: Abraham Jorge surname: Jimenez Alfaro fullname: Jimenez Alfaro, Abraham Jorge email: ajja_mx@yahoo.com organization: Div. de Ingenieria en Sistemas Computacionales Tecnologico de Estudios Superiores de Ecatepec Av. Tecnologico s/n, Col. Valle de Anahuac, Ecatepec de Morelos Edo. de Mexico, Mexico – sequence: 3 givenname: Luis Angel surname: Reyes Hernandez fullname: Reyes Hernandez, Luis Angel organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Orizaba Oriente 9, Emiliano Zapata Sur, 94320 Orizaba, Veracruz, Mexico – sequence: 4 givenname: Brian Alison surname: Suarez Carranza fullname: Suarez Carranza, Brian Alison email: brianalisonsuarez@hotmail.com organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico – sequence: 5 givenname: Jhacer Kharen surname: Ruiz Garduno fullname: Ruiz Garduno, Jhacer Kharen email: jhacerkharen@itzitacuaro.edu.mx organization: Departamento de Sistemas y Computacion Instituto Tecnologico de Zitacuaro Av. Tecnologico No. 186 Manzanillos, Zitacuaro, Michoacan, Mexico |
BookMark | eNrjYmDJy89LZWCQNDTQMzQ0sNT39Qhx1jMyMDTXszAwMDMxMmRk4DI0NbAEsk0NLDgZ9F0SSxIVcjPzMvPSrRQSFYqTM_JzEosUUoryC_JLSxQKilJTMpNLMstSFXLzU1JzeBhY0xJzilN5oTQ3g7Sba4izh25mampqfEFRZm5iUWU81C5j_LIAeJUwiA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MHTC.2017.8006421 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISBN | 1509064508 9781509064502 |
EndPage | 93 |
ExternalDocumentID | 8006421 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-ieee_primary_80064213 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:50:51 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_80064213 |
ParticipantIDs | ieee_primary_8006421 |
PublicationCentury | 2000 |
PublicationDate | 2017-March |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-March |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Mexican Humanitarian Technology Conference (MHTC) |
PublicationTitleAbbrev | MHTC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 3.3139036 |
Snippet | The Scholar Dropout (SD) phenomenon in universities has been increasing in the past years, having repercussions in social, economic, and academic, aspects... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 89 |
SubjectTerms | Computational modeling Data mining Data models Economics predictive model Predictive models scholar dropout Software |
Title | Data mining: a scholar dropout predictive model |
URI | https://ieeexplore.ieee.org/document/8006421 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21XWCC0iKgUHlgJB-0Tp2wllZRpSCGInWr_HFZEGlVnIVfT85Ji0Ad2CzL8lk3-Pl8790B3Cd5FCshueck7lyIsVfFWcRpiI1AI0PtAsXsZZK-8cUqWrXg4aCFQURHPkOfhi6Xbza6pK-yIA6dLrMNbZEktVarSVQ-hkmQpcspcbWE36z71TDF4cX8DLK9pZom8u6XVvn6608Rxv8e5Rz6P8o89nrAnC60sLiAk726-LMHwbO0kn24tg9PTLImeGWGuiGUlm13lJmhO465Jjh9GMxny2nqkfH1tq49sW7sji-hU2wKvAI2Mrms3m0oEDXHMJeTyCg94rnQFZar-Bp6x3a4OT49gFNyYc2yuoWO3ZV4V8GuVUPn728ucYgc |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMpSpQItoy8MDI3nQOnXKWqgCNBVDkLpFflwWRFoVZ-HXEztpEagDm2VZPusGf3e-7_MB3EyyIBSMU8dK3CljI6fMswynIVQMFfelTRTjxTh6o8_LYNmA250WBhEt-QxdM7S1fLWShXkq80Lf6jIP4DAwcUWl1qpLlXf-xIujZGrYWsytV_5qmWIRY9aGeGurIoq8u4UWrvz68w3jfw9zDN0fbR553aHOCTQwP4XWVl_82QHvgWtOPmzjh3vCSZ2-EmX6IRSarDemNmNuOWLb4HRhMHtMppFjjKfr6veJtLY7OoNmvsrxHMhQZbyM3JAhSop-xseBEnJIMyZLNBdhDzr7dujvn76GVpTE83T-tHgZwJFxZ8W5uoCm3hR4WYKwFlfW999_L4tp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Mexican+Humanitarian+Technology+Conference+%28MHTC%29&rft.atitle=Data+mining%3A+a+scholar+dropout+predictive+model&rft.au=Rodriguez+Maya%2C+Noel+Enrique&rft.au=Jimenez+Alfaro%2C+Abraham+Jorge&rft.au=Reyes+Hernandez%2C+Luis+Angel&rft.au=Suarez+Carranza%2C+Brian+Alison&rft.date=2017-03-01&rft.pub=IEEE&rft.spage=89&rft.epage=93&rft_id=info:doi/10.1109%2FMHTC.2017.8006421&rft.externalDocID=8006421 |