A new structure-preserving dimensionality reduction approach and OI-net implementation

A new generic nonlinear feature extraction map f is presented based on concepts from approximation theory. Let f map an input data vector x/spl isin//spl Rfr//sup n/, where n is high, to an appropriate feature vector y/spl isin//spl Rfr//sup m/, where m is sufficiently low. Also let X={X/sub 1/,...,...

Full description

Saved in:
Bibliographic Details
Published in1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227) Vol. 1; pp. 690 - 694 vol.1
Main Authors Oten, R., de Figueiredo, R.J.P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 1998
Subjects
Online AccessGet full text
ISBN0780348591
9780780348592
ISSN1098-7576
DOI10.1109/IJCNN.1998.682364

Cover

Abstract A new generic nonlinear feature extraction map f is presented based on concepts from approximation theory. Let f map an input data vector x/spl isin//spl Rfr//sup n/, where n is high, to an appropriate feature vector y/spl isin//spl Rfr//sup m/, where m is sufficiently low. Also let X={X/sub 1/,...,X/sub N/} denote an available training set in /spl Rfr//sup n/. In this paper f is derived by requiring that the geometric structure (metric space attributes) of the points f(X)={f(X/sub 1/),...,f(X/sub N/)} in the feature space /spl Rfr//sup m/ be as similar as possible to the structure of the points X in the data space /spl Rfr//sup n/. This is accomplished by selecting first an appropriate dimension m for the feature space /spl Rfr//sup m/ according to the size N of the available training set X, subject to bounds on the distortion of the data structure caused by f and on the error in the estimation of the underlying likelihood functions in the feature space. The map f(i) is designed by a multi-dimensional scaling (MDS) approach that minimizes the Sammon's cost function. This approach uses graph-theoretic (minimal spanning tree) and genetic algorithmic concepts to search efficiently the optimal structure-preserving point-to-point mapping of the training samples X/sub 1/,...,X/sub N/ to their images in /spl Rfr//sup m/,Y/sub 1/,...,Y/sub N/. Finally, an optimal interpolating (OI) artificial neural network is used to recover the entire function f:/spl Rfr//spl rarr//spl Rfr//sup m/ by interpolating the values y/sub i/=1,...,N at X/sub i/, i=1,...,N. Preliminary simulation results based on this approach are also given.
AbstractList A new generic nonlinear feature extraction map f is presented based on concepts from approximation theory. Let f map an input data vector x/spl isin//spl Rfr//sup n/, where n is high, to an appropriate feature vector y/spl isin//spl Rfr//sup m/, where m is sufficiently low. Also let X={X/sub 1/,...,X/sub N/} denote an available training set in /spl Rfr//sup n/. In this paper f is derived by requiring that the geometric structure (metric space attributes) of the points f(X)={f(X/sub 1/),...,f(X/sub N/)} in the feature space /spl Rfr//sup m/ be as similar as possible to the structure of the points X in the data space /spl Rfr//sup n/. This is accomplished by selecting first an appropriate dimension m for the feature space /spl Rfr//sup m/ according to the size N of the available training set X, subject to bounds on the distortion of the data structure caused by f and on the error in the estimation of the underlying likelihood functions in the feature space. The map f(i) is designed by a multi-dimensional scaling (MDS) approach that minimizes the Sammon's cost function. This approach uses graph-theoretic (minimal spanning tree) and genetic algorithmic concepts to search efficiently the optimal structure-preserving point-to-point mapping of the training samples X/sub 1/,...,X/sub N/ to their images in /spl Rfr//sup m/,Y/sub 1/,...,Y/sub N/. Finally, an optimal interpolating (OI) artificial neural network is used to recover the entire function f:/spl Rfr//spl rarr//spl Rfr//sup m/ by interpolating the values y/sub i/=1,...,N at X/sub i/, i=1,...,N. Preliminary simulation results based on this approach are also given.
Author Oten, R.
de Figueiredo, R.J.P.
Author_xml – sequence: 1
  givenname: R.
  surname: Oten
  fullname: Oten, R.
  organization: California Univ., Irvine, CA, USA
– sequence: 2
  givenname: R.J.P.
  surname: de Figueiredo
  fullname: de Figueiredo, R.J.P.
BookMark eNp9zrFuwjAUBdAnFaRCyQe0k38gwSZxYo8IgaADLBVrZCWvravEsWwHxN_jis59y9XVPcObw8QMBgFeGc0Yo3J5eN8cjxmTUmSlWOVl8QRzWgmaF4JLNoFZRCKteFU-Q-L9D41XcE65nMF5TQxeiQ9ubMLoMLUOPbqLNl-k1T0arwejOh1uxGEbTaxEWesG1XwTZVpyOqQGA9G97TD6oH7JAqafqvOY_OULvO22H5t9qhGxtk73yt3qx7f5v-Md8xhFYg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN.1998.682364
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
Statistics
EndPage 694 vol.1
ExternalDocumentID 682364
GroupedDBID 29I
6IE
6IH
CBEJK
RIE
RIO
ID FETCH-ieee_primary_6823643
IEDL.DBID RIE
ISBN 0780348591
9780780348592
ISSN 1098-7576
IngestDate Tue Aug 26 17:32:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_6823643
ParticipantIDs ieee_primary_682364
PublicationCentury 1900
PublicationDate 19980000
PublicationDateYYYYMMDD 1998-01-01
PublicationDate_xml – year: 1998
  text: 19980000
PublicationDecade 1990
PublicationTitle 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227)
PublicationTitleAbbrev IJCNN
PublicationYear 1998
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000455059
ssj0060749
ssj0020275
Score 2.5123186
Snippet A new generic nonlinear feature extraction map f is presented based on concepts from approximation theory. Let f map an input data vector x/spl isin//spl...
SourceID ieee
SourceType Publisher
StartPage 690
SubjectTerms Bayesian methods
Kernel
Nonlinear distortion
Pattern recognition
Recursive estimation
Statistics
Stress
System testing
Training data
Tree graphs
Title A new structure-preserving dimensionality reduction approach and OI-net implementation
URI https://ieeexplore.ieee.org/document/682364
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ09T8MwEIZPtFOnQloE5UMeEFtSN3FCPFYVVdshMADqVtWxixCqi0oywK_HZyflQx3YkshydJLlO5_vfQ7gigkxiG44Ei6V9Fls27yE0jexvwj5Kqdc2gLZLJk8stk8nlecbauFUUrZ4jMV4KO9y5ebvMRUWT_B7tysAQ2zypxUa5dOoajORc9cnbXoD_huYtwkt7eeyM40AbY9vqc0Yghvqyg89XtYXX2awf3pbJRlqOdLA_frXy1YrAcat520-92CC7Hw5DUoCxHkn3-wjv807hC631I_cr9zYkdwoLQHnaE2Z_H1B7kmtkLUpt49aNctIEi1I3jQwmDVsZ478DQkJkgnDklbbpWPRba4F-lnIrGLgCOAmLifbJEYi2uC1FBzstSS3E19rQrysq6r2nFIF3rj24fRxEdrFm8Oj7FwhkTH0NQbrU5QFs4FHSzjaJWHLOcJTxGDqGKa01jxlJ2Ct2eC3t6vZ9ByqkBMgpxD01ikLkxYUIhLuyC-AKAAtBQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMdfFA9yQgdG8VcPxttG2bq5HgmRDMTpAQ23hW3FEEMxCAf96-1rN_wRDt62penykqbv9fV9Pw_giqVp27vhSLgUuc183ebFzW0V-6cun2aU57pANg6iJzYY--OCs621MEIIXXwmHHzUd_n5IltjqqwVYHdutgt7yu0z34i1NgkVivpc9M3FaYv-wO8GylFyfe-J9EwVYusDfEg9hvi2gsNTvrvF5aca3OoPunGMir7QMT__1YRF-6BezYi73zW6EEtPXp31KnWyzz9gx3-adwCNb7Efedy4sUPYEdKCekeq0_j8g1wTXSOqk-8W1MomEKTYEyyoYrhqaM91eO4QFaYTA6VdL4WNZba4G8kXkmMfAcMAUZE_WSIzFlcFKbHmZCJz8tC3pViR2bysa8chDWj2bkfdyEZrkjcDyEiMId4RVORCimMUhvOUtie-N81clvGAhwhCFD7NqC94yE7A2jJBc-vXS9iPRvfDZNiP706hajSCmBI5g4qyTpyrIGGVXujF8QU9xLdh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1998+IEEE+International+Joint+Conference+on+Neural+Networks+Proceedings.+IEEE+World+Congress+on+Computational+Intelligence+%28Cat.+No.98CH36227%29&rft.atitle=A+new+structure-preserving+dimensionality+reduction+approach+and+OI-net+implementation&rft.au=Oten%2C+R.&rft.au=de+Figueiredo%2C+R.J.P.&rft.date=1998-01-01&rft.pub=IEEE&rft.isbn=9780780348592&rft.issn=1098-7576&rft.volume=1&rft.spage=690&rft.epage=694+vol.1&rft_id=info:doi/10.1109%2FIJCNN.1998.682364&rft.externalDocID=682364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-7576&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-7576&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-7576&client=summon