Map learning using associative memory neural network
Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed...
Saved in:
Published in | IJCNN-91-Seattle International Joint Conference on Neural Networks Vol. ii; p. 891 vol.2 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
1991
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation (Knn) is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. By training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning the city map of Dayton, Ohio, is used to illustrate the proposed network.< > |
---|---|
AbstractList | Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation (Knn) is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. By training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning the city map of Dayton, Ohio, is used to illustrate the proposed network.< > |
Author | McAulay, A.D. Xu, X. Chen, C.L.P. |
Author_xml | – sequence: 1 givenname: C.L.P. surname: Chen fullname: Chen, C.L.P. organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA – sequence: 2 givenname: X. surname: Xu fullname: Xu, X. organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA – sequence: 3 givenname: A.D. surname: McAulay fullname: McAulay, A.D. organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA |
BookMark | eNp9jb0OgjAURm-iJv7xADr1BcTe0CLMRKMmMrmTxlxNFVrSgoa3F6OzZ_jO8A1nCkNjDQEskIeIPF0fjlmeh5imGKKUIhYDmPJNwiOOscAxBN7feY-QPJbJBMRJ1awk5Yw2N9b6zyrv7UWrRj-JVVRZ1zFDrVNlr-Zl3WMOo6sqPQU_z2C5256z_UoTUVE7XSnXFd9-9Pd8A-85Njs |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IJCNN.1991.155464 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 155464 |
Genre | teaser-abstract |
GroupedDBID | 6IE 6IK 6IL AAJGR ACGHX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
ID | FETCH-ieee_primary_1554643 |
IEDL.DBID | RIE |
ISBN | 0780301641 9780780301641 |
IngestDate | Wed Jun 26 19:28:21 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_1554643 |
ParticipantIDs | ieee_primary_155464 |
PublicationCentury | 1900 |
PublicationDate | 19910000 |
PublicationDateYYYYMMDD | 1991-01-01 |
PublicationDate_xml | – year: 1991 text: 19910000 |
PublicationDecade | 1990 |
PublicationTitle | IJCNN-91-Seattle International Joint Conference on Neural Networks |
PublicationTitleAbbrev | IJCNN |
PublicationYear | 1991 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000450658 |
Score | 2.446642 |
Snippet | Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 891 vol.2 |
SubjectTerms | Associative memory Cities and towns Computer science Covariance matrix Nearest neighbor searches Neural networks Position measurement Vectors |
Title | Map learning using associative memory neural network |
URI | https://ieeexplore.ieee.org/document/155464 |
Volume | ii |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sT56qtaL1gxy87nY_sh85F0stdPGg0FtJ4rQHdVt0V9BfbybZrig9CAu72UMYGMKbJO-9AbiJRSy0KWM9ienK41EWeqZOVl6Q6yzRGPBMkTh5XqTTRz5bJIvGZ9tqYRDRks_Qp097l_-00TUdlY0I-1LegU4mhJNqtccppjIhMLUb85zK_JSHjb9OO24uNcNAjO5m46IgpV7ou0l_NVex2DLpOdH2u7UkJErJs19Xytdffwwb_xn2EQx-RHzsvoWnYzjAsg-9XRcH1izqE-BzuWVN84g1Ix78msld0j6QvRIX95OR8aV8MS9LGx_AcHL7MJ56FMdy6ywrli6E-BS65abEM2AatdmeRpjIWPBVmimey5zniqNBr0jyc-jvmWC49-8FHDoCFT2X0K3earwyUF2pa5ukb1_tk-k |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFL1oXeiqWitaX7NwmzSPyWtdLGltgosK3YXJeNuF2paaCPr1zp2kEaULIZDHYrgwhHNm5pxzAe7cyI2korGGQH9ucCewDcWTc8MKZeBJtHiQkzk5Sf34iY9n3qzO2dZeGETU4jM06VGf5T-vZElbZX3CPp_vw4Gi1aFfmbWaDRXFTQhO9dI8JKLvc7tO2Gne62NN24r6o_EgTcmrZ5vVsL_aq2h0GbYr2_a7DiUkUcmLWRa5Kb_-RDb-s_Bj6P7Y-NhjA1AnsIfLDrS3fRxY_VufAk_EmtXtIxaMlPALJrbT9oHsjdS4n4yiL8WrumnheBd6w_vpIDaojmxdhVZkVQnuGbSWqyWeA5Mo1QLVQU-4EZ_7Qc5DEfIw56jwyxH8Ajo7Bujt_HoLh_E0mWSTUfpwCUeVnIquK2gVmxKvFXAX-Y2esG9O35c0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IJCNN-91-Seattle+International+Joint+Conference+on+Neural+Networks&rft.atitle=Map+learning+using+associative+memory+neural+network&rft.au=Chen%2C+C.L.P.&rft.au=Xu%2C+X.&rft.au=McAulay%2C+A.D.&rft.date=1991-01-01&rft.pub=IEEE&rft.isbn=9780780301641&rft.volume=ii&rft.spage=891+vol.2&rft_id=info:doi/10.1109%2FIJCNN.1991.155464&rft.externalDocID=155464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/sc.gif&client=summon&freeimage=true |