Map learning using associative memory neural network

Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed...

Full description

Saved in:
Bibliographic Details
Published inIJCNN-91-Seattle International Joint Conference on Neural Networks Vol. ii; p. 891 vol.2
Main Authors Chen, C.L.P., Xu, X., McAulay, A.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 1991
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation (Knn) is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. By training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning the city map of Dayton, Ohio, is used to illustrate the proposed network.< >
AbstractList Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation (Knn) is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. By training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning the city map of Dayton, Ohio, is used to illustrate the proposed network.< >
Author McAulay, A.D.
Xu, X.
Chen, C.L.P.
Author_xml – sequence: 1
  givenname: C.L.P.
  surname: Chen
  fullname: Chen, C.L.P.
  organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA
– sequence: 2
  givenname: X.
  surname: Xu
  fullname: Xu, X.
  organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA
– sequence: 3
  givenname: A.D.
  surname: McAulay
  fullname: McAulay, A.D.
  organization: Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA
BookMark eNp9jb0OgjAURm-iJv7xADr1BcTe0CLMRKMmMrmTxlxNFVrSgoa3F6OzZ_jO8A1nCkNjDQEskIeIPF0fjlmeh5imGKKUIhYDmPJNwiOOscAxBN7feY-QPJbJBMRJ1awk5Yw2N9b6zyrv7UWrRj-JVVRZ1zFDrVNlr-Zl3WMOo6sqPQU_z2C5256z_UoTUVE7XSnXFd9-9Pd8A-85Njs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IJCNN.1991.155464
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 155464
Genre teaser-abstract
GroupedDBID 6IE
6IK
6IL
AAJGR
ACGHX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-ieee_primary_1554643
IEDL.DBID RIE
ISBN 0780301641
9780780301641
IngestDate Wed Jun 26 19:28:21 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_1554643
ParticipantIDs ieee_primary_155464
PublicationCentury 1900
PublicationDate 19910000
PublicationDateYYYYMMDD 1991-01-01
PublicationDate_xml – year: 1991
  text: 19910000
PublicationDecade 1990
PublicationTitle IJCNN-91-Seattle International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 1991
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000450658
Score 2.446642
Snippet Summary form only given. Map learning using associative memory is considered. Given a source location and a destination location to be visited and its...
SourceID ieee
SourceType Publisher
StartPage 891 vol.2
SubjectTerms Associative memory
Cities and towns
Computer science
Covariance matrix
Nearest neighbor searches
Neural networks
Position measurement
Vectors
Title Map learning using associative memory neural network
URI https://ieeexplore.ieee.org/document/155464
Volume ii
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sT56qtaL1gxy87nY_sh85F0stdPGg0FtJ4rQHdVt0V9BfbybZrig9CAu72UMYGMKbJO-9AbiJRSy0KWM9ienK41EWeqZOVl6Q6yzRGPBMkTh5XqTTRz5bJIvGZ9tqYRDRks_Qp097l_-00TUdlY0I-1LegU4mhJNqtccppjIhMLUb85zK_JSHjb9OO24uNcNAjO5m46IgpV7ou0l_NVex2DLpOdH2u7UkJErJs19Xytdffwwb_xn2EQx-RHzsvoWnYzjAsg-9XRcH1izqE-BzuWVN84g1Ix78msld0j6QvRIX95OR8aV8MS9LGx_AcHL7MJ56FMdy6ywrli6E-BS65abEM2AatdmeRpjIWPBVmimey5zniqNBr0jyc-jvmWC49-8FHDoCFT2X0K3earwyUF2pa5ukb1_tk-k
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFL1oXeiqWitaX7NwmzSPyWtdLGltgosK3YXJeNuF2paaCPr1zp2kEaULIZDHYrgwhHNm5pxzAe7cyI2korGGQH9ucCewDcWTc8MKZeBJtHiQkzk5Sf34iY9n3qzO2dZeGETU4jM06VGf5T-vZElbZX3CPp_vw4Gi1aFfmbWaDRXFTQhO9dI8JKLvc7tO2Gne62NN24r6o_EgTcmrZ5vVsL_aq2h0GbYr2_a7DiUkUcmLWRa5Kb_-RDb-s_Bj6P7Y-NhjA1AnsIfLDrS3fRxY_VufAk_EmtXtIxaMlPALJrbT9oHsjdS4n4yiL8WrumnheBd6w_vpIDaojmxdhVZkVQnuGbSWqyWeA5Mo1QLVQU-4EZ_7Qc5DEfIw56jwyxH8Ajo7Bujt_HoLh_E0mWSTUfpwCUeVnIquK2gVmxKvFXAX-Y2esG9O35c0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IJCNN-91-Seattle+International+Joint+Conference+on+Neural+Networks&rft.atitle=Map+learning+using+associative+memory+neural+network&rft.au=Chen%2C+C.L.P.&rft.au=Xu%2C+X.&rft.au=McAulay%2C+A.D.&rft.date=1991-01-01&rft.pub=IEEE&rft.isbn=9780780301641&rft.volume=ii&rft.spage=891+vol.2&rft_id=info:doi/10.1109%2FIJCNN.1991.155464&rft.externalDocID=155464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780301641/sc.gif&client=summon&freeimage=true