Unconditional maximum likelihood approach for localization of near-field sources in 3D space
Since maximum likelihood (ML) approaches have better resolution performance than the conventional localization methods in the presence of less number and highly correlated source signal samples and low signal to noise ratios, we propose unconditional ML (UML) method for estimating azimuth, elevation...
Saved in:
Published in | Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004 pp. 233 - 237 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since maximum likelihood (ML) approaches have better resolution performance than the conventional localization methods in the presence of less number and highly correlated source signal samples and low signal to noise ratios, we propose unconditional ML (UML) method for estimating azimuth, elevation and range parameters of near-field sources in 3D space in this paper. Besides these superiorities, stability, asymptotic unbiasedness, asymptotic minimum variance properties are motivated the application of ML approach. Despite these advantages, ML estimator has computational complexity. Fortunately, this problem can be tackled by the application of expectation/maximization (EM) iterative algorithm which converts the multidimensional search problem to one dimensional parallel search problems in order to prevent computational complexity. |
---|---|
AbstractList | Since maximum likelihood (ML) approaches have better resolution performance than the conventional localization methods in the presence of less number and highly correlated source signal samples and low signal to noise ratios, we propose unconditional ML (UML) method for estimating azimuth, elevation and range parameters of near-field sources in 3D space in this paper. Besides these superiorities, stability, asymptotic unbiasedness, asymptotic minimum variance properties are motivated the application of ML approach. Despite these advantages, ML estimator has computational complexity. Fortunately, this problem can be tackled by the application of expectation/maximization (EM) iterative algorithm which converts the multidimensional search problem to one dimensional parallel search problems in order to prevent computational complexity. |
Author | Cirpan, H.A. Paker, S. Kabaoglu, N. |
Author_xml | – sequence: 1 givenname: N. surname: Kabaoglu fullname: Kabaoglu, N. organization: Tech. Vocational Sch., Kadir Has Univ., Istanbul, Turkey – sequence: 2 givenname: H.A. surname: Cirpan fullname: Cirpan, H.A. – sequence: 3 givenname: S. surname: Paker fullname: Paker, S. |
BookMark | eNp9js1qAjEUhQNVaNV5Ajf3BRwT489kbVvqTlB3glwyd_C2mdwhUWj79LXg2sOBb3G-xRmoXpRISo2NLo3RbrrZ7babfTnTel6aubWrmXtShVtV-lZbLStnnlWR86e-xbrlwtoXdTxEL7HmC0vEAC1-c3ttIfAXBT6L1IBdlwT9GRpJEMRj4F_810EaiIRp0jCFGrJck6cMHMG-Qu7Q00j1GwyZijuHavz-tl9_TJiITl3iFtPP6f7VPl7_AFWIRoc |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISSPIT.2004.1433729 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 237 |
ExternalDocumentID | 1433729 |
Genre | orig-research |
GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIB RIC RIE RIL |
ID | FETCH-ieee_primary_14337293 |
IEDL.DBID | RIE |
ISBN | 9780780386891 0780386892 |
IngestDate | Wed Jun 26 19:27:00 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_14337293 |
ParticipantIDs | ieee_primary_1433729 |
PublicationCentury | 2000 |
PublicationDate | 20040000 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 20040000 |
PublicationDecade | 2000 |
PublicationTitle | Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004 |
PublicationTitleAbbrev | ISSPIT |
PublicationYear | 2004 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000396533 |
Score | 2.6941454 |
Snippet | Since maximum likelihood (ML) approaches have better resolution performance than the conventional localization methods in the presence of less number and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 233 |
SubjectTerms | Asymptotic stability Azimuth Computational complexity Iterative algorithms Maximum likelihood estimation Multidimensional systems Search problems Signal resolution Signal to noise ratio Unified modeling language |
Title | Unconditional maximum likelihood approach for localization of near-field sources in 3D space |
URI | https://ieeexplore.ieee.org/document/1433729 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LS8MwHMd_bDvpxccm6lR-B4-2a9e0Nmd1bMJksA12EEbSplC2tkNbEP96k_Thgx28pTmEH5T2-3t-AnDL3VBx1gJDil1kEBZyQ1HXDD4MiGCERL6G6UxfvPGSPK_cVQvumlkYIYRuPhOmWupafpgFhUqVDaS2qypTG9r3lJazWk0-xXKoJ10XHZn7luN7Ph1WgJ362a6oQ7ZFB5P5fDZZ6PjQrI79db-KlpfREUxrw8quko1Z5NwMPv8wG_9r-TH0vgf5cNZI1Am0RHoKhz8YhF14XaYyJA7jMieICfuIkyLBbbwR21gxj7HGjqP0b1FrXzW7iVmEqfxSDN0Gh2Ud4B3jFJ1HlH-qQPSgP3paPIwNZet6V5It1pWZzhl00iwV54Aus2hkO8xm3CVRxP2AEsqoYwviM5vyC-juO-Fy_3YfDsrOF5XCuIJO_laIaynqOb_Rb_ML7majGg |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT8IwHMd_QTyoFx9gVHz8Dh7d2Fi3tGeVgAIhARIOJqTdumSBDaMsMf71tt3ARzh423ZofknTfX_PTwFuhR9pzlpoKbGLLcIjYWnqmiVaIZGckJgamE5_EHQm5GnqTytwt5mFkVKa5jNp60dTy4-WYa5TZU2l7brKtAO7yq-mQTGttcmoOB4LlPNiYnPqeDSgrFUidtbvbskdch3W7I5Gw-7YRIh2ufCvG1aMwLQPob82regrmdv5Stjh5x9q439tP4L69ygfDjcidQwVmZ3AwQ8KYQ1eJpkKiqOkyApiyj-SNE9xkczlItHUY1yDx1F5uGjUr5zexGWMmTorlmmEw6IS8I5Jht4Dqn9VKOvQaD-O7zuWtnX2WrAtZqWZ3ilUs2UmzwB97rDY9bjLhU_iWNCQEcaZ50pCucvEOdS2rXCx_fMN7HXG_d6s1x08N2C_6IPRCY1LqK7ecnmlJH4lrs3OfgGlBKZl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+Fourth+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology%2C+2004&rft.atitle=Unconditional+maximum+likelihood+approach+for+localization+of+near-field+sources+in+3D+space&rft.au=Kabaoglu%2C+N.&rft.au=Cirpan%2C+H.A.&rft.au=Paker%2C+S.&rft.date=2004-01-01&rft.pub=IEEE&rft.isbn=9780780386891&rft.spage=233&rft.epage=237&rft_id=info:doi/10.1109%2FISSPIT.2004.1433729&rft.externalDocID=1433729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386891/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386891/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780386891/sc.gif&client=summon&freeimage=true |