Non-destructive testing of cracks using eddy-currents and a generalized regression neural network (GRNN)
In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe us...
Saved in:
Published in | IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450) Vol. 2; pp. 239 - 242 vol.2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe using a finite element solution for the eddy currents. The target value to be trained was the shape of the crack using a window based on the probe impedance. Noisy data, added to the probe measurements, is used to enhance the robustness of the method. We present a comparison of the results obtained using the proposed method with those obtained from a feed-forward neural network. It is shown that the GRNN is faster both in training as well as in identification of the cracks. |
---|---|
AbstractList | In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe using a finite element solution for the eddy currents. The target value to be trained was the shape of the crack using a window based on the probe impedance. Noisy data, added to the probe measurements, is used to enhance the robustness of the method. We present a comparison of the results obtained using the proposed method with those obtained from a feed-forward neural network. It is shown that the GRNN is faster both in training as well as in identification of the cracks. |
Author | Barkeshli, K. Bahramgiri, M. |
Author_xml | – sequence: 1 givenname: M. surname: Bahramgiri fullname: Bahramgiri, M. organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran – sequence: 2 givenname: K. surname: Barkeshli fullname: Barkeshli, K. organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran |
BookMark | eNp9Tj1PwzAQtQRIfGVHYrkRhgTbaUkzIkRhihDtXlnxNTUtZ3TngMqvx0ideXrS-1reuTqmSKjUldGVMbq9e3hdVFbrujLWtNbaI1W0zUxn1s1sct-eqkLkXWdMbWOn-kxtukilR0k89il8IaTsAw0Q19Cz67cCo_xl9H5f9iMzUhJw5MHBgITsduEHPTAOjCIhEhCOuc2SviNv4eb5retuL9XJ2u0Ei4NeqOv50_LxpQyIuPrk8OF4vzr8rv9ffwHztkmr |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/APS.2003.1219222 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 242 vol.2 |
ExternalDocumentID | 1219222 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL RIO |
ID | FETCH-ieee_primary_12192223 |
IEDL.DBID | RIE |
ISBN | 9780780378469 0780378466 |
IngestDate | Wed Jun 26 19:20:34 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_12192223 |
ParticipantIDs | ieee_primary_1219222 |
PublicationCentury | 2000 |
PublicationDate | 20030000 |
PublicationDateYYYYMMDD | 2003-01-01 |
PublicationDate_xml | – year: 2003 text: 20030000 |
PublicationDecade | 2000 |
PublicationTitle | IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450) |
PublicationTitleAbbrev | APS |
PublicationYear | 2003 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000527250 |
Score | 2.67026 |
Snippet | In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 239 |
SubjectTerms | Eddy currents Finite element methods Impedance Magnetic noise Neural networks Noise shaping Nondestructive testing Probes Robustness Shape |
Title | Non-destructive testing of cracks using eddy-currents and a generalized regression neural network (GRNN) |
URI | https://ieeexplore.ieee.org/document/1219222 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2USdyjt4ULBd119pjiLOIawMf8Buo2teqyjpmJvg_nqTtJ0oO3jKj0N4IYQvefm-LwDnPgtEGDHfyhL9hVnaV3uOR75FxL2-EAEnI6QdxeHw2b-fBJMGXG20MERkyGdk66p5yxdFutKpsl5fbS-FZ01oMs5LrdYmn-IELlNwbm7mkeMxhathZbBTt3n9TOnw3vX40ZiB2tWYvz5XMdgy2IVRHVVJKXmzV8uZna7_GDb-N-w96Pyo-HC8wad9aJBsw0tcSEtQZRv7SbjUNhsyxyLDdKEF96ip8DmSEF9WWro3fWAiBSaYlx7Vr2sSuKC8pNBK1J6YybsqDKMcL-4e4viyA93B7dPN0NKRTuelqcW0CtI7gJYsJB0C6oXLuGCpF3r-TLg8YdyNEqYOeCG5TnAE7W0jHG_v7sKO4cGZ7MUJtNQ06VTh-XJ2ZhbyG2mioGA |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH6Z86AnlU3U-ZGDBwXbdf1KcxRxVt3K0Am7la55W0VJZW6C-_UmaTdRdvCUj0N4QwhP8uZ5ngCcutTjfkBdI0vUF2ZpR-45FrgGInM6nHsMtZC2H_nhk3s38kY1uFhqYRBRk8_QVFX9ls-LdKZSZe2O3F4Sz9ZgXZ6rA79Uay0zKpZnUwno-m4eWA6VyOpXFjuLNls8VFqsfTl41HagZjXqr-9VNLp0t6C_iKsklbyas-nYTOd_LBv_G_g2NH90fGSwRKgdqKFowHNUCINjZRz7iWSqjDZEToqMpBMluSeKDJ8T5PzLSEv_pg-SCE4Skpcu1S9z5GSCeUmiFUS5YiZvstCccnJ28xBF501oda-HV6GhIo3fS1uLuArS2YW6KATuAVFLlzFOU8d33DG3WUKZHSRUHvF8tC1vHxqrRjhY3X0CG-Gw34t7t9F9CzY1K07nMg6hLqeMRxLdp-Njvajf_Iyjqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Antennas+and+Propagation+Society+International+Symposium.+Digest.+Held+in+conjunction+with%3A+USNC%2FCNC%2FURSI+North+American+Radio+Sci.+Meeting+%28Cat.+No.03CH37450%29&rft.atitle=Non-destructive+testing+of+cracks+using+eddy-currents+and+a+generalized+regression+neural+network+%28GRNN%29&rft.au=Bahramgiri%2C+M.&rft.au=Barkeshli%2C+K.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780378469&rft.volume=2&rft.spage=239&rft.epage=242+vol.2&rft_id=info:doi/10.1109%2FAPS.2003.1219222&rft.externalDocID=1219222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/sc.gif&client=summon&freeimage=true |