Non-destructive testing of cracks using eddy-currents and a generalized regression neural network (GRNN)

In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe us...

Full description

Saved in:
Bibliographic Details
Published inIEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450) Vol. 2; pp. 239 - 242 vol.2
Main Authors Bahramgiri, M., Barkeshli, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe using a finite element solution for the eddy currents. The target value to be trained was the shape of the crack using a window based on the probe impedance. Noisy data, added to the probe measurements, is used to enhance the robustness of the method. We present a comparison of the results obtained using the proposed method with those obtained from a feed-forward neural network. It is shown that the GRNN is faster both in training as well as in identification of the cracks.
AbstractList In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized regression neural network (GRNN) scheme. The network is trained by several known crack shapes based on the input impedance of a magnetic probe using a finite element solution for the eddy currents. The target value to be trained was the shape of the crack using a window based on the probe impedance. Noisy data, added to the probe measurements, is used to enhance the robustness of the method. We present a comparison of the results obtained using the proposed method with those obtained from a feed-forward neural network. It is shown that the GRNN is faster both in training as well as in identification of the cracks.
Author Barkeshli, K.
Bahramgiri, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Bahramgiri
  fullname: Bahramgiri, M.
  organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran
– sequence: 2
  givenname: K.
  surname: Barkeshli
  fullname: Barkeshli, K.
  organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran
BookMark eNp9Tj1PwzAQtQRIfGVHYrkRhgTbaUkzIkRhihDtXlnxNTUtZ3TngMqvx0ideXrS-1reuTqmSKjUldGVMbq9e3hdVFbrujLWtNbaI1W0zUxn1s1sct-eqkLkXWdMbWOn-kxtukilR0k89il8IaTsAw0Q19Cz67cCo_xl9H5f9iMzUhJw5MHBgITsduEHPTAOjCIhEhCOuc2SviNv4eb5retuL9XJ2u0Ei4NeqOv50_LxpQyIuPrk8OF4vzr8rv9ffwHztkmr
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/APS.2003.1219222
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 242 vol.2
ExternalDocumentID 1219222
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
RIO
ID FETCH-ieee_primary_12192223
IEDL.DBID RIE
ISBN 9780780378469
0780378466
IngestDate Wed Jun 26 19:20:34 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_12192223
ParticipantIDs ieee_primary_1219222
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450)
PublicationTitleAbbrev APS
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527250
Score 2.67026
Snippet In this paper, we propose a new method for the robust estimation of crack dimensions. The method is based on the eddy current evaluation and a generalized...
SourceID ieee
SourceType Publisher
StartPage 239
SubjectTerms Eddy currents
Finite element methods
Impedance
Magnetic noise
Neural networks
Noise shaping
Nondestructive testing
Probes
Robustness
Shape
Title Non-destructive testing of cracks using eddy-currents and a generalized regression neural network (GRNN)
URI https://ieeexplore.ieee.org/document/1219222
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2USdyjt4ULBd119pjiLOIawMf8Buo2teqyjpmJvg_nqTtJ0oO3jKj0N4IYQvefm-LwDnPgtEGDHfyhL9hVnaV3uOR75FxL2-EAEnI6QdxeHw2b-fBJMGXG20MERkyGdk66p5yxdFutKpsl5fbS-FZ01oMs5LrdYmn-IELlNwbm7mkeMxhathZbBTt3n9TOnw3vX40ZiB2tWYvz5XMdgy2IVRHVVJKXmzV8uZna7_GDb-N-w96Pyo-HC8wad9aJBsw0tcSEtQZRv7SbjUNhsyxyLDdKEF96ip8DmSEF9WWro3fWAiBSaYlx7Vr2sSuKC8pNBK1J6YybsqDKMcL-4e4viyA93B7dPN0NKRTuelqcW0CtI7gJYsJB0C6oXLuGCpF3r-TLg8YdyNEqYOeCG5TnAE7W0jHG_v7sKO4cGZ7MUJtNQ06VTh-XJ2ZhbyG2mioGA
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH6Z86AnlU3U-ZGDBwXbdf1KcxRxVt3K0Am7la55W0VJZW6C-_UmaTdRdvCUj0N4QwhP8uZ5ngCcutTjfkBdI0vUF2ZpR-45FrgGInM6nHsMtZC2H_nhk3s38kY1uFhqYRBRk8_QVFX9ls-LdKZSZe2O3F4Sz9ZgXZ6rA79Uay0zKpZnUwno-m4eWA6VyOpXFjuLNls8VFqsfTl41HagZjXqr-9VNLp0t6C_iKsklbyas-nYTOd_LBv_G_g2NH90fGSwRKgdqKFowHNUCINjZRz7iWSqjDZEToqMpBMluSeKDJ8T5PzLSEv_pg-SCE4Skpcu1S9z5GSCeUmiFUS5YiZvstCccnJ28xBF501oda-HV6GhIo3fS1uLuArS2YW6KATuAVFLlzFOU8d33DG3WUKZHSRUHvF8tC1vHxqrRjhY3X0CG-Gw34t7t9F9CzY1K07nMg6hLqeMRxLdp-Njvajf_Iyjqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Antennas+and+Propagation+Society+International+Symposium.+Digest.+Held+in+conjunction+with%3A+USNC%2FCNC%2FURSI+North+American+Radio+Sci.+Meeting+%28Cat.+No.03CH37450%29&rft.atitle=Non-destructive+testing+of+cracks+using+eddy-currents+and+a+generalized+regression+neural+network+%28GRNN%29&rft.au=Bahramgiri%2C+M.&rft.au=Barkeshli%2C+K.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780378469&rft.volume=2&rft.spage=239&rft.epage=242+vol.2&rft_id=info:doi/10.1109%2FAPS.2003.1219222&rft.externalDocID=1219222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378469/sc.gif&client=summon&freeimage=true