A Neural Network Pruning Approach Based on Local and Global Statistical Distributions
Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a prun...
Saved in:
Published in | International Conference on Systems and Informatics pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2689-7148 |
DOI | 10.1109/ICSAI65059.2024.10893846 |
Cover
Loading…
Abstract | Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a pruning method that integrates local and global statistical distributions, utilizing the scale factors and running variances from batch normalization layers to identify redundant filters, and then obtaining a compact model by removing these redundant filters. On the VOC2007 dataset, we pruned 68.3% of the parameters and 51.9% of the computational cost on the YOLOV5s network with only a 6.5% loss in mAP_0.5. On the VOC2012 dataset, we pruned 69.7% of the parameters and 51.8% of the computational cost on the YOLOV5s network with only a 5.9% loss in mAP_0.5. |
---|---|
AbstractList | Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a pruning method that integrates local and global statistical distributions, utilizing the scale factors and running variances from batch normalization layers to identify redundant filters, and then obtaining a compact model by removing these redundant filters. On the VOC2007 dataset, we pruned 68.3% of the parameters and 51.9% of the computational cost on the YOLOV5s network with only a 6.5% loss in mAP_0.5. On the VOC2012 dataset, we pruned 69.7% of the parameters and 51.8% of the computational cost on the YOLOV5s network with only a 5.9% loss in mAP_0.5. |
Author | Xie, Xuesong Zhang, Xiaoling Liu, Bowen |
Author_xml | – sequence: 1 givenname: Bowen surname: Liu fullname: Liu, Bowen organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China – sequence: 2 givenname: Xuesong surname: Xie fullname: Xie, Xuesong organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China – sequence: 3 givenname: Xiaoling surname: Zhang fullname: Zhang, Xiaoling organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China |
BookMark | eNqFjstOwzAURC-oSJQ2f8DCP9D03jgPexnKo5UQqtR2XbmtAUOwI9sR4u8xEqyZzRnNzGKuYGSd1QCMMCdCOV8tNu2qrrCSeYFFmRMKyUVZn0EmGyk4p4qQuDiHcVELOWuoFJeQhfCGiJyaJBrDrmVPevCqS4ifzr-ztR-ssS-s7Xvv1PGV3aigT8xZ9uiOaafsiT107pDsJqpoQjQ_8W0y3hyGaJwNU7h4Vl3Q2S8ncH1_t10sZ0Zrve-9-VD-a__3mP9TfwPJE0ZJ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSAI65059.2024.10893846 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9798331510138 |
EISSN | 2689-7148 |
EndPage | 5 |
ExternalDocumentID | 10893846 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-ieee_primary_108938463 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:49:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_108938463 |
ParticipantIDs | ieee_primary_10893846 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-14 |
PublicationDateYYYYMMDD | 2024-12-14 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Systems and Informatics |
PublicationTitleAbbrev | ICSAI |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003177771 |
Score | 3.7898972 |
Snippet | Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Batch normalization Computational efficiency Computational modeling Edge computing Filters Informatics Memory management Statistical distributions YOLO |
Title | A Neural Network Pruning Approach Based on Local and Global Statistical Distributions |
URI | https://ieeexplore.ieee.org/document/10893846 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qp1oiPKnvwmtgkm9cxVksrWgQt9Fayj1yURDS5-Oud2ST1gYK5ZFnIMrAs38zm-74BONfSS5QMMzvXQWzzxJW28P3cFsT7k-E4FgkJnO8W4WzJb1bBqhWrGy2M1tqQz7RDQ_MvX5WypqsyPOGIrgiYPehh5daItTYXKgiE-LgdW2ecXMwnD-kcM5CABCked7rPvzVSMTgyHcCii6Chjzw5dSUc-f7DnPHfIe6C9SnZY_cbMNqDLV0MYdD1bGDtER7CzhcDwn1YpozcObJnfBk6OK5R000JS1uvcXaJMKdYWbBbQj2WFYo1fQIY5anG5hnHV-S_27bOerNgNL1-nMxsCnz90vhZrLuY_QPoF2WhD4F5IvZFjrmEGwmuco5VmZupiCpaGUkRH4H16xLHf8yfwDZtAfFAXD6CfvVa61NE80qcmV38AEThoyM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ1oPaiXasX4UXUPXsFSlgJHrDatUmJim_TWsMty0YDRcvHXO7NA_YgmcmHDYTLJZvNmh_feAFwq2Q9SOUjMTLm-yQNbmsJxMlMQ708Oer4ISOA8jQfjOb9buItarK61MEopTT5TFi31v_y0kCW1yvCEI7oiYG7CFgI_Dyq51rqlglCIj93wdXrB1WT4GE6wBnFJktLnVhPg2ygVjSSjNsRNDhWB5MkqV8KS7z_sGf-d5B4Yn6I99rCGo33YUHkH2s3UBlYf4g7sfrEgPIB5yMifI3nGlyaEY4ySeiUsrN3G2TUCXcqKnEWEeyzJU1ZNCmBUqWqjZ1zfkANvPTzrzYDu6HY2HJuU-PKlcrRYNjk7h9DKi1wdAesL3xEZVhO2J3iacbyX2Unq0Z1WelL4x2D8GuLkj-8XsD2eTaNlNInvT2GHtoNYITbvQmv1WqozxPaVONc7-gEC_qZz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Systems+and+Informatics&rft.atitle=A+Neural+Network+Pruning+Approach+Based+on+Local+and+Global+Statistical+Distributions&rft.au=Liu%2C+Bowen&rft.au=Xie%2C+Xuesong&rft.au=Zhang%2C+Xiaoling&rft.date=2024-12-14&rft.pub=IEEE&rft.eissn=2689-7148&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICSAI65059.2024.10893846&rft.externalDocID=10893846 |