A Neural Network Pruning Approach Based on Local and Global Statistical Distributions

Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a prun...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Systems and Informatics pp. 1 - 5
Main Authors Liu, Bowen, Xie, Xuesong, Zhang, Xiaoling
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.12.2024
Subjects
Online AccessGet full text
ISSN2689-7148
DOI10.1109/ICSAI65059.2024.10893846

Cover

Loading…
Abstract Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a pruning method that integrates local and global statistical distributions, utilizing the scale factors and running variances from batch normalization layers to identify redundant filters, and then obtaining a compact model by removing these redundant filters. On the VOC2007 dataset, we pruned 68.3% of the parameters and 51.9% of the computational cost on the YOLOV5s network with only a 6.5% loss in mAP_0.5. On the VOC2012 dataset, we pruned 69.7% of the parameters and 51.8% of the computational cost on the YOLOV5s network with only a 5.9% loss in mAP_0.5.
AbstractList Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks make it difficult for deep neural networks to leverage their strengths on edge computing devices. To overcome this issue, we describe a pruning method that integrates local and global statistical distributions, utilizing the scale factors and running variances from batch normalization layers to identify redundant filters, and then obtaining a compact model by removing these redundant filters. On the VOC2007 dataset, we pruned 68.3% of the parameters and 51.9% of the computational cost on the YOLOV5s network with only a 6.5% loss in mAP_0.5. On the VOC2012 dataset, we pruned 69.7% of the parameters and 51.8% of the computational cost on the YOLOV5s network with only a 5.9% loss in mAP_0.5.
Author Xie, Xuesong
Zhang, Xiaoling
Liu, Bowen
Author_xml – sequence: 1
  givenname: Bowen
  surname: Liu
  fullname: Liu, Bowen
  organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China
– sequence: 2
  givenname: Xuesong
  surname: Xie
  fullname: Xie, Xuesong
  organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China
– sequence: 3
  givenname: Xiaoling
  surname: Zhang
  fullname: Zhang, Xiaoling
  organization: School of Information Science and Technology, Beijing University Of Technology,Beijing,China
BookMark eNqFjstOwzAURC-oSJQ2f8DCP9D03jgPexnKo5UQqtR2XbmtAUOwI9sR4u8xEqyZzRnNzGKuYGSd1QCMMCdCOV8tNu2qrrCSeYFFmRMKyUVZn0EmGyk4p4qQuDiHcVELOWuoFJeQhfCGiJyaJBrDrmVPevCqS4ifzr-ztR-ssS-s7Xvv1PGV3aigT8xZ9uiOaafsiT107pDsJqpoQjQ_8W0y3hyGaJwNU7h4Vl3Q2S8ncH1_t10sZ0Zrve-9-VD-a__3mP9TfwPJE0ZJ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI65059.2024.10893846
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9798331510138
EISSN 2689-7148
EndPage 5
ExternalDocumentID 10893846
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-ieee_primary_108938463
IEDL.DBID RIE
IngestDate Wed Aug 27 01:49:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_108938463
ParticipantIDs ieee_primary_10893846
PublicationCentury 2000
PublicationDate 2024-Dec.-14
PublicationDateYYYYMMDD 2024-12-14
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-14
  day: 14
PublicationDecade 2020
PublicationTitle International Conference on Systems and Informatics
PublicationTitleAbbrev ICSAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177771
Score 3.7898972
Snippet Deep neural networks have now demonstrated unique advantages in multiple domains, but the high memory and computational power required to deploy these networks...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Batch normalization
Computational efficiency
Computational modeling
Edge computing
Filters
Informatics
Memory management
Statistical distributions
YOLO
Title A Neural Network Pruning Approach Based on Local and Global Statistical Distributions
URI https://ieeexplore.ieee.org/document/10893846
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qp1oiPKnvwmtgkm9cxVksrWgQt9Fayj1yURDS5-Oud2ST1gYK5ZFnIMrAs38zm-74BONfSS5QMMzvXQWzzxJW28P3cFsT7k-E4FgkJnO8W4WzJb1bBqhWrGy2M1tqQz7RDQ_MvX5WypqsyPOGIrgiYPehh5daItTYXKgiE-LgdW2ecXMwnD-kcM5CABCked7rPvzVSMTgyHcCii6Chjzw5dSUc-f7DnPHfIe6C9SnZY_cbMNqDLV0MYdD1bGDtER7CzhcDwn1YpozcObJnfBk6OK5R000JS1uvcXaJMKdYWbBbQj2WFYo1fQIY5anG5hnHV-S_27bOerNgNL1-nMxsCnz90vhZrLuY_QPoF2WhD4F5IvZFjrmEGwmuco5VmZupiCpaGUkRH4H16xLHf8yfwDZtAfFAXD6CfvVa61NE80qcmV38AEThoyM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ1oPaiXasX4UXUPXsFSlgJHrDatUmJim_TWsMty0YDRcvHXO7NA_YgmcmHDYTLJZvNmh_feAFwq2Q9SOUjMTLm-yQNbmsJxMlMQ708Oer4ISOA8jQfjOb9buItarK61MEopTT5TFi31v_y0kCW1yvCEI7oiYG7CFgI_Dyq51rqlglCIj93wdXrB1WT4GE6wBnFJktLnVhPg2ygVjSSjNsRNDhWB5MkqV8KS7z_sGf-d5B4Yn6I99rCGo33YUHkH2s3UBlYf4g7sfrEgPIB5yMifI3nGlyaEY4ySeiUsrN3G2TUCXcqKnEWEeyzJU1ZNCmBUqWqjZ1zfkANvPTzrzYDu6HY2HJuU-PKlcrRYNjk7h9DKi1wdAesL3xEZVhO2J3iacbyX2Unq0Z1WelL4x2D8GuLkj-8XsD2eTaNlNInvT2GHtoNYITbvQmv1WqozxPaVONc7-gEC_qZz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Systems+and+Informatics&rft.atitle=A+Neural+Network+Pruning+Approach+Based+on+Local+and+Global+Statistical+Distributions&rft.au=Liu%2C+Bowen&rft.au=Xie%2C+Xuesong&rft.au=Zhang%2C+Xiaoling&rft.date=2024-12-14&rft.pub=IEEE&rft.eissn=2689-7148&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICSAI65059.2024.10893846&rft.externalDocID=10893846