Research on Adaptive Particle Swarm Optimization Algorithm Based on Diversity-Driven Optimization
A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAA...
Saved in:
Published in | 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 1039 - 1042 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAAPSO effectively balances exploration and exploitation. Empirical studies demonstrate the superior performance of DAAPSO across various dimensions compared to existing algorithms. Specifically, experiments on curve energy smoothing and feature selection indicate that DAAPSO significantly improves the smoothness of B-spline curves, reduces curvature peaks post-smoothing, and enhances the accuracy of 5nearest neighbor classifiers when compared to alternative feature selection methods. These results highlight the robust optimization capabilities of DAAPSO, showcasing its effectiveness in both benchmark functions and real-world applications. The findings underscore the efficiency, practicality, and broad applicability of the DAAPSO algorithm. |
---|---|
AbstractList | A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAAPSO effectively balances exploration and exploitation. Empirical studies demonstrate the superior performance of DAAPSO across various dimensions compared to existing algorithms. Specifically, experiments on curve energy smoothing and feature selection indicate that DAAPSO significantly improves the smoothness of B-spline curves, reduces curvature peaks post-smoothing, and enhances the accuracy of 5nearest neighbor classifiers when compared to alternative feature selection methods. These results highlight the robust optimization capabilities of DAAPSO, showcasing its effectiveness in both benchmark functions and real-world applications. The findings underscore the efficiency, practicality, and broad applicability of the DAAPSO algorithm. |
Author | Lei, Pengfei Zuo, Jialiang Wang, Peishuo Zhang, Zhihao |
Author_xml | – sequence: 1 givenname: Peishuo surname: Wang fullname: Wang, Peishuo email: 19855279262@163.com organization: Air Force Engineering University,Xi'an,China – sequence: 2 givenname: Jialiang surname: Zuo fullname: Zuo, Jialiang email: 13402950096@163.com organization: Air Force Engineering University,Xi'an,China – sequence: 3 givenname: Zhihao surname: Zhang fullname: Zhang, Zhihao email: jialnzuo@163.com organization: Air Force Engineering University,Xi'an,China – sequence: 4 givenname: Pengfei surname: Lei fullname: Lei, Pengfei email: leipf626@163.com organization: Air Force Engineering University,Xi'an,China |
BookMark | eNqFjssKwjAURCPowtcfCOYHrEnaps2yvtCVou7l0l5toGklDYp-vRV04crVDDNzYHqkXVYlEjLmzOOcqWmyWSZSMBV6gonA40wqEYm4RYYqUrEfMl9KHgVdAnusEWya06qkSQZXp29Id2CdTgukhztYQ7dNavQTnH6PiktltcsNnUGN2ZtbNIyttXtMFrax5Q8wIJ0zFDUOP9ono9XyOF9PNCKerlYbsI_T96H_p34BiklGBA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIEA62095.2024.10692728 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Explore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350366174 |
EndPage | 1042 |
ExternalDocumentID | 10692728 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-ieee_primary_106927283 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 09 06:12:58 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106927283 |
ParticipantIDs | ieee_primary_10692728 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-14 |
PublicationDateYYYYMMDD | 2024-06-14 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) |
PublicationTitleAbbrev | AIEA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 3.85579 |
Snippet | A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1039 |
SubjectTerms | Boosting Classification algorithms Convergence DAAPSO algorithm Diversity driven Diversity reception Feature extraction linearly decreasing inertia weight Optimization Particle swarm optimization Smoothing methods Splines (mathematics) |
Title | Research on Adaptive Particle Swarm Optimization Algorithm Based on Diversity-Driven Optimization |
URI | https://ieeexplore.ieee.org/document/10692728 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH5xO3lSseLHlBy8pra1SZtj5zam4ByosNtImlRF147SIvjrTdJWmSh4CyFv8pKvJx_PkwCcExHQjCiJY5JJHGY-wyySFGu00OArIkHsp323Mzp9DG8WZNGK1a0WRillyWfKNUF7ly-LtDZHZXqEUxZEQdyDXsRYI9ZqOVu-xy6S63FCA71m0Nu-IHS71Bv_pljYmOzArCuwYYu8unUl3PTjx1uM__ZoF5xvhR6af2HPHmypfB94R6NDRY4SyddmKkPztnOg-3dertCdjl214kuUvD0V5Uv1vEJDjWbS2I06ogYelWYm3DBwYDAZP1xNsfFxuW5eqlh27l0eQD8vcnUISKRE6mbzPKEXD4xyzsPUnISSTEUxTfkROL9mcfxH_Alsm9o27Ck_HEC_Kmt1qnG6Eme2fT4BcpuZ_Q |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7RedCTihM_pubgtbWtTboeq9vodJsDJ-xWkiZ1om1HaRH89SZZq0wUvIWQj5d8PW-S50kALjFzSIIFN7o44Yab2L7he5wYEi0k-DKPYf1p33hCwif3bo7ntVhda2GEEJp8JkwV1Hf5PI8rdVQmZzjxHc_pbsIWVo7FSq5Vs7Zsy78Khv2AONJrkBs_xzWb9Gs_p2jgGOzCpKlyxRd5NauSmfHHj9cY_23THrS_NXpo-oU--7AhsgOgDZEO5RkKOF2qxQxN6-GBHt9pkaIHGZvW8ksUvD3nxUu5SNGNxDOu8vUaqobRK9RauJahDZ1Bf3YbGsrGaLl6qyJqzLs-hFaWZ-IIEIsxlx1nWUy6Dz6hlLqxOgvFifC6JKbH0P61iJM_4i9gO5yNR9FoOLk_hR3V8opLZbsdaJVFJc4kapfsXPfVJ6z4nUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Research+on+Adaptive+Particle+Swarm+Optimization+Algorithm+Based+on+Diversity-Driven+Optimization&rft.au=Wang%2C+Peishuo&rft.au=Zuo%2C+Jialiang&rft.au=Zhang%2C+Zhihao&rft.au=Lei%2C+Pengfei&rft.date=2024-06-14&rft.pub=IEEE&rft.spage=1039&rft.epage=1042&rft_id=info:doi/10.1109%2FAIEA62095.2024.10692728&rft.externalDocID=10692728 |