Research on Adaptive Particle Swarm Optimization Algorithm Based on Diversity-Driven Optimization

A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAA...

Full description

Saved in:
Bibliographic Details
Published in2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 1039 - 1042
Main Authors Wang, Peishuo, Zuo, Jialiang, Zhang, Zhihao, Lei, Pengfei
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAAPSO effectively balances exploration and exploitation. Empirical studies demonstrate the superior performance of DAAPSO across various dimensions compared to existing algorithms. Specifically, experiments on curve energy smoothing and feature selection indicate that DAAPSO significantly improves the smoothness of B-spline curves, reduces curvature peaks post-smoothing, and enhances the accuracy of 5nearest neighbor classifiers when compared to alternative feature selection methods. These results highlight the robust optimization capabilities of DAAPSO, showcasing its effectiveness in both benchmark functions and real-world applications. The findings underscore the efficiency, practicality, and broad applicability of the DAAPSO algorithm.
AbstractList A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence challenges in particle swarm optimization. Integrating an inertia weight linear decline mechanism with a diversity-driven speed strategy, DAAPSO effectively balances exploration and exploitation. Empirical studies demonstrate the superior performance of DAAPSO across various dimensions compared to existing algorithms. Specifically, experiments on curve energy smoothing and feature selection indicate that DAAPSO significantly improves the smoothness of B-spline curves, reduces curvature peaks post-smoothing, and enhances the accuracy of 5nearest neighbor classifiers when compared to alternative feature selection methods. These results highlight the robust optimization capabilities of DAAPSO, showcasing its effectiveness in both benchmark functions and real-world applications. The findings underscore the efficiency, practicality, and broad applicability of the DAAPSO algorithm.
Author Lei, Pengfei
Zuo, Jialiang
Wang, Peishuo
Zhang, Zhihao
Author_xml – sequence: 1
  givenname: Peishuo
  surname: Wang
  fullname: Wang, Peishuo
  email: 19855279262@163.com
  organization: Air Force Engineering University,Xi'an,China
– sequence: 2
  givenname: Jialiang
  surname: Zuo
  fullname: Zuo, Jialiang
  email: 13402950096@163.com
  organization: Air Force Engineering University,Xi'an,China
– sequence: 3
  givenname: Zhihao
  surname: Zhang
  fullname: Zhang, Zhihao
  email: jialnzuo@163.com
  organization: Air Force Engineering University,Xi'an,China
– sequence: 4
  givenname: Pengfei
  surname: Lei
  fullname: Lei, Pengfei
  email: leipf626@163.com
  organization: Air Force Engineering University,Xi'an,China
BookMark eNqFjssKwjAURCPowtcfCOYHrEnaps2yvtCVou7l0l5toGklDYp-vRV04crVDDNzYHqkXVYlEjLmzOOcqWmyWSZSMBV6gonA40wqEYm4RYYqUrEfMl9KHgVdAnusEWya06qkSQZXp29Id2CdTgukhztYQ7dNavQTnH6PiktltcsNnUGN2ZtbNIyttXtMFrax5Q8wIJ0zFDUOP9ono9XyOF9PNCKerlYbsI_T96H_p34BiklGBA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIEA62095.2024.10692728
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Explore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350366174
EndPage 1042
ExternalDocumentID 10692728
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-ieee_primary_106927283
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106927283
ParticipantIDs ieee_primary_10692728
PublicationCentury 2000
PublicationDate 2024-June-14
PublicationDateYYYYMMDD 2024-06-14
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-14
  day: 14
PublicationDecade 2020
PublicationTitle 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
PublicationTitleAbbrev AIEA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 3.85579
Snippet A novel Diversity Actuate Adaptive Particle Swarm Optimization (DAAPSO) algorithm is introduced to enhance convergence speed and address premature convergence...
SourceID ieee
SourceType Publisher
StartPage 1039
SubjectTerms Boosting
Classification algorithms
Convergence
DAAPSO algorithm
Diversity driven
Diversity reception
Feature extraction
linearly decreasing inertia weight
Optimization
Particle swarm optimization
Smoothing methods
Splines (mathematics)
Title Research on Adaptive Particle Swarm Optimization Algorithm Based on Diversity-Driven Optimization
URI https://ieeexplore.ieee.org/document/10692728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH5xO3lSseLHlBy8pra1SZtj5zam4ByosNtImlRF147SIvjrTdJWmSh4CyFv8pKvJx_PkwCcExHQjCiJY5JJHGY-wyySFGu00OArIkHsp323Mzp9DG8WZNGK1a0WRillyWfKNUF7ly-LtDZHZXqEUxZEQdyDXsRYI9ZqOVu-xy6S63FCA71m0Nu-IHS71Bv_pljYmOzArCuwYYu8unUl3PTjx1uM__ZoF5xvhR6af2HPHmypfB94R6NDRY4SyddmKkPztnOg-3dertCdjl214kuUvD0V5Uv1vEJDjWbS2I06ogYelWYm3DBwYDAZP1xNsfFxuW5eqlh27l0eQD8vcnUISKRE6mbzPKEXD4xyzsPUnISSTEUxTfkROL9mcfxH_Alsm9o27Ck_HEC_Kmt1qnG6Eme2fT4BcpuZ_Q
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7RedCTihM_pubgtbWtTboeq9vodJsDJ-xWkiZ1om1HaRH89SZZq0wUvIWQj5d8PW-S50kALjFzSIIFN7o44Yab2L7he5wYEi0k-DKPYf1p33hCwif3bo7ntVhda2GEEJp8JkwV1Hf5PI8rdVQmZzjxHc_pbsIWVo7FSq5Vs7Zsy78Khv2AONJrkBs_xzWb9Gs_p2jgGOzCpKlyxRd5NauSmfHHj9cY_23THrS_NXpo-oU--7AhsgOgDZEO5RkKOF2qxQxN6-GBHt9pkaIHGZvW8ksUvD3nxUu5SNGNxDOu8vUaqobRK9RauJahDZ1Bf3YbGsrGaLl6qyJqzLs-hFaWZ-IIEIsxlx1nWUy6Dz6hlLqxOgvFifC6JKbH0P61iJM_4i9gO5yNR9FoOLk_hR3V8opLZbsdaJVFJc4kapfsXPfVJ6z4nUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Research+on+Adaptive+Particle+Swarm+Optimization+Algorithm+Based+on+Diversity-Driven+Optimization&rft.au=Wang%2C+Peishuo&rft.au=Zuo%2C+Jialiang&rft.au=Zhang%2C+Zhihao&rft.au=Lei%2C+Pengfei&rft.date=2024-06-14&rft.pub=IEEE&rft.spage=1039&rft.epage=1042&rft_id=info:doi/10.1109%2FAIEA62095.2024.10692728&rft.externalDocID=10692728