There is Strength in Numbers: A Comprehensive Study of Machine Learning Algorithms for Sex Identification on Animal Bone Remains
This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning al...
Saved in:
Published in | 2024 IEEE 20th International Conference on e-Science (e-Science) pp. 1 - 10 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning algorithms, such as kNN, SVMs, Decision Trees, Neural Networks, k-Means, DBSCAN, and GMM - demonstrating high accuracy in sex classification across multiple datasets from various time periods. We furthermore evaluate a variety of clustering results on unlabeled data and highlight their respective strengths and drawbacks. Our results suggest that machine learning offers a promising direction for enhancing the analysis of ancient and recent animal remains, providing valuable insights into past animal husbandry practices and their implications for understanding human history. |
---|---|
AbstractList | This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning algorithms, such as kNN, SVMs, Decision Trees, Neural Networks, k-Means, DBSCAN, and GMM - demonstrating high accuracy in sex classification across multiple datasets from various time periods. We furthermore evaluate a variety of clustering results on unlabeled data and highlight their respective strengths and drawbacks. Our results suggest that machine learning offers a promising direction for enhancing the analysis of ancient and recent animal remains, providing valuable insights into past animal husbandry practices and their implications for understanding human history. |
Author | Paxinos, Ptolemaios Dimitrios von Zastrow, Maximilian Schuler, Nadine-Sarah Peters, Joris Yuan, Jing Kroger, Peer |
Author_xml | – sequence: 1 givenname: Nadine-Sarah surname: Schuler fullname: Schuler, Nadine-Sarah organization: Ludwig-Maximilians-Universität,Munich,Germany – sequence: 2 givenname: Ptolemaios Dimitrios surname: Paxinos fullname: Paxinos, Ptolemaios Dimitrios organization: SNSB - SPM,Munich,Germany – sequence: 3 givenname: Jing surname: Yuan fullname: Yuan, Jing email: Jing.Yuan@campus.lmu.de organization: Ludwig-Maximilians-Universität,Munich,Germany – sequence: 4 givenname: Maximilian surname: von Zastrow fullname: von Zastrow, Maximilian organization: University of Southern Denmark,MMMI,Sønderborg,Denmark – sequence: 5 givenname: Joris surname: Peters fullname: Peters, Joris organization: Ludwig-Maximilians-Universität,Munich,Germany – sequence: 6 givenname: Peer surname: Kroger fullname: Kroger, Peer organization: Christian-Albrechts-Universität,Kiel,Germany |
BookMark | eNqFjz1Pw0AQRA8EEgn4H1BsQWvnPrAd05koCCSgwOmjw1nbi-y96M5BpOOn4wJqpJGmmDfFm4szdoxC3CiZKCWLBcZVTcg1ZrpQJtFS3yZKZvky1-ZEREVeLE0qTZZmSp6KmTY6jU0uzYWIQviQUhqtVJ6ZmfjedOgRKEA1euR27IAYXg_DO_pwByWs3LD32CEH-sQJOuyO4Bp4sXVHjPCM1jNxC2XfOk9jNwRonIcKv-BphzxSQ7UdyTFMKZkG28P9ZANvOFjicCXOG9sHjH77Ulw_rDerx5gQcbv308Eft39y5p_5BwIyV4E |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/e-Science62913.2024.10678723 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350365610 |
EISSN | 2325-3703 |
EndPage | 10 |
ExternalDocumentID | 10678723 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-ieee_primary_106787233 |
IEDL.DBID | RIE |
IngestDate | Wed Sep 25 09:21:52 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106787233 |
ParticipantIDs | ieee_primary_10678723 |
PublicationCentury | 2000 |
PublicationDate | 2024-Sept.-16 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 20th International Conference on e-Science (e-Science) |
PublicationTitleAbbrev | e-Science |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211763 |
Score | 3.8640845 |
Snippet | This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy algorithms Animals archaeological data Bones History Machine learning Machine learning algorithms Neural networks sex dimorphism sheep bones talus |
Title | There is Strength in Numbers: A Comprehensive Study of Machine Learning Algorithms for Sex Identification on Animal Bone Remains |
URI | https://ieeexplore.ieee.org/document/10678723 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sD-JJxYiPKnPwmrTJpnl4q2IpQov4gN5KHrNtsE0kSUE9-dPd2SQVRUHIIYRkM8tmszsz3_cNYxdUvCeKvVhHz6Y0o3RQgqgX6lxYEQ-F3KMjEZzHE2f0ZN9O-9OarK64MIiowGdo0KnK5cdZtKZQWZfkzjzX4i3Wcn2_ImttAipcujJysmzT-5WOZhf1en44lm9y6QtattE08a2YilpLhrts0lhRQUiejXUZGtH7D4HGf5u5x7Qv2h7cbRakfbaF6QH7kB9CjpAUQAnodF4uIElhogqBFJcwAPoj5LiogOxAuMI3yASMFcoSoRZgncNgOc_ypFysCpAbXXjAV6hYvqIO-4E8BmmyCpZwlckn73EVJGmhsc7w5vF6pFMXZi-VusWssZ4fsnYq7z5iYAoR9x3umIFLcvumH1q21xOOG9leKHx-zLRfmzj54_op26HBINiF6XRYu8zXeCbX9jI8V2P6CXFiqQE |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20gnpSseJH1Tl4TWqyaZp6q2Kp2gbRCr2VfOy2wTaRJAX15E93Z5NWFAUhhxCSZcJmM7Mz770BOKPmPUHohBp3LCozyg2KF5z7GhNmwHwhY3ROBOe-a3efrNthY1iS1RUXhnOuwGdcp1NVyw-TYE6psjrJnTlNk63CWoMCi4KutUypMLmZkctlnSxQSpp1rpUrxDZbBpO7QdPSF4N8a6eivElnC9yFHQWI5Fmf574evP-QaPy3odtQ_SLu4f3SJe3ACo934UN-CinHKEMqQcfjfIJRjK5qBZJdYBvpn5DySQFlR0IWvmEisK9wlhxLCdYxtqfjJI3yySxDGeriI3_FgucrysQfyqMdRzNvipeJfPKBz7wozqpQ61wPrroavcLopdC3GC2sZ3tQieXd-4CGEGHDZrbhNUlw32j5puWcC7sZWI4vWuwAqr8OcfjH9VPY6A76vVHvxr07gk2aGAJhGHYNKnk658fS0-f-iZrfT3TarE4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+20th+International+Conference+on+e-Science+%28e-Science%29&rft.atitle=There+is+Strength+in+Numbers%3A+A+Comprehensive+Study+of+Machine+Learning+Algorithms+for+Sex+Identification+on+Animal+Bone+Remains&rft.au=Schuler%2C+Nadine-Sarah&rft.au=Paxinos%2C+Ptolemaios+Dimitrios&rft.au=Yuan%2C+Jing&rft.au=von+Zastrow%2C+Maximilian&rft.date=2024-09-16&rft.pub=IEEE&rft.eissn=2325-3703&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2Fe-Science62913.2024.10678723&rft.externalDocID=10678723 |