There is Strength in Numbers: A Comprehensive Study of Machine Learning Algorithms for Sex Identification on Animal Bone Remains

This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning al...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 20th International Conference on e-Science (e-Science) pp. 1 - 10
Main Authors Schuler, Nadine-Sarah, Paxinos, Ptolemaios Dimitrios, Yuan, Jing, von Zastrow, Maximilian, Peters, Joris, Kroger, Peer
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning algorithms, such as kNN, SVMs, Decision Trees, Neural Networks, k-Means, DBSCAN, and GMM - demonstrating high accuracy in sex classification across multiple datasets from various time periods. We furthermore evaluate a variety of clustering results on unlabeled data and highlight their respective strengths and drawbacks. Our results suggest that machine learning offers a promising direction for enhancing the analysis of ancient and recent animal remains, providing valuable insights into past animal husbandry practices and their implications for understanding human history.
AbstractList This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus bone in archaeozoological research. Leveraging data from well-documented sheep populations, we trained and tested various machine learning algorithms, such as kNN, SVMs, Decision Trees, Neural Networks, k-Means, DBSCAN, and GMM - demonstrating high accuracy in sex classification across multiple datasets from various time periods. We furthermore evaluate a variety of clustering results on unlabeled data and highlight their respective strengths and drawbacks. Our results suggest that machine learning offers a promising direction for enhancing the analysis of ancient and recent animal remains, providing valuable insights into past animal husbandry practices and their implications for understanding human history.
Author Paxinos, Ptolemaios Dimitrios
von Zastrow, Maximilian
Schuler, Nadine-Sarah
Peters, Joris
Yuan, Jing
Kroger, Peer
Author_xml – sequence: 1
  givenname: Nadine-Sarah
  surname: Schuler
  fullname: Schuler, Nadine-Sarah
  organization: Ludwig-Maximilians-Universität,Munich,Germany
– sequence: 2
  givenname: Ptolemaios Dimitrios
  surname: Paxinos
  fullname: Paxinos, Ptolemaios Dimitrios
  organization: SNSB - SPM,Munich,Germany
– sequence: 3
  givenname: Jing
  surname: Yuan
  fullname: Yuan, Jing
  email: Jing.Yuan@campus.lmu.de
  organization: Ludwig-Maximilians-Universität,Munich,Germany
– sequence: 4
  givenname: Maximilian
  surname: von Zastrow
  fullname: von Zastrow, Maximilian
  organization: University of Southern Denmark,MMMI,Sønderborg,Denmark
– sequence: 5
  givenname: Joris
  surname: Peters
  fullname: Peters, Joris
  organization: Ludwig-Maximilians-Universität,Munich,Germany
– sequence: 6
  givenname: Peer
  surname: Kroger
  fullname: Kroger, Peer
  organization: Christian-Albrechts-Universität,Kiel,Germany
BookMark eNqFjz1Pw0AQRA8EEgn4H1BsQWvnPrAd05koCCSgwOmjw1nbi-y96M5BpOOn4wJqpJGmmDfFm4szdoxC3CiZKCWLBcZVTcg1ZrpQJtFS3yZKZvky1-ZEREVeLE0qTZZmSp6KmTY6jU0uzYWIQviQUhqtVJ6ZmfjedOgRKEA1euR27IAYXg_DO_pwByWs3LD32CEH-sQJOuyO4Bp4sXVHjPCM1jNxC2XfOk9jNwRonIcKv-BphzxSQ7UdyTFMKZkG28P9ZANvOFjicCXOG9sHjH77Ulw_rDerx5gQcbv308Eft39y5p_5BwIyV4E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/e-Science62913.2024.10678723
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350365610
EISSN 2325-3703
EndPage 10
ExternalDocumentID 10678723
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-ieee_primary_106787233
IEDL.DBID RIE
IngestDate Wed Sep 25 09:21:52 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106787233
ParticipantIDs ieee_primary_10678723
PublicationCentury 2000
PublicationDate 2024-Sept.-16
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2024 IEEE 20th International Conference on e-Science (e-Science)
PublicationTitleAbbrev e-Science
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211763
Score 3.8640845
Snippet This study explores the application of supervised and unsupervised machine learning algorithms for predicting the sex of sheep using measurements of the talus...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
algorithms
Animals
archaeological data
Bones
History
Machine learning
Machine learning algorithms
Neural networks
sex dimorphism
sheep bones
talus
Title There is Strength in Numbers: A Comprehensive Study of Machine Learning Algorithms for Sex Identification on Animal Bone Remains
URI https://ieeexplore.ieee.org/document/10678723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sD-JJxYiPKnPwmrTJpnl4q2IpQov4gN5KHrNtsE0kSUE9-dPd2SQVRUHIIYRkM8tmszsz3_cNYxdUvCeKvVhHz6Y0o3RQgqgX6lxYEQ-F3KMjEZzHE2f0ZN9O-9OarK64MIiowGdo0KnK5cdZtKZQWZfkzjzX4i3Wcn2_ImttAipcujJysmzT-5WOZhf1en44lm9y6QtattE08a2YilpLhrts0lhRQUiejXUZGtH7D4HGf5u5x7Qv2h7cbRakfbaF6QH7kB9CjpAUQAnodF4uIElhogqBFJcwAPoj5LiogOxAuMI3yASMFcoSoRZgncNgOc_ypFysCpAbXXjAV6hYvqIO-4E8BmmyCpZwlckn73EVJGmhsc7w5vF6pFMXZi-VusWssZ4fsnYq7z5iYAoR9x3umIFLcvumH1q21xOOG9leKHx-zLRfmzj54_op26HBINiF6XRYu8zXeCbX9jI8V2P6CXFiqQE
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20gnpSseJH1Tl4TWqyaZp6q2Kp2gbRCr2VfOy2wTaRJAX15E93Z5NWFAUhhxCSZcJmM7Mz770BOKPmPUHohBp3LCozyg2KF5z7GhNmwHwhY3ROBOe-a3efrNthY1iS1RUXhnOuwGdcp1NVyw-TYE6psjrJnTlNk63CWoMCi4KutUypMLmZkctlnSxQSpp1rpUrxDZbBpO7QdPSF4N8a6eivElnC9yFHQWI5Fmf574evP-QaPy3odtQ_SLu4f3SJe3ACo934UN-CinHKEMqQcfjfIJRjK5qBZJdYBvpn5DySQFlR0IWvmEisK9wlhxLCdYxtqfjJI3yySxDGeriI3_FgucrysQfyqMdRzNvipeJfPKBz7wozqpQ61wPrroavcLopdC3GC2sZ3tQieXd-4CGEGHDZrbhNUlw32j5puWcC7sZWI4vWuwAqr8OcfjH9VPY6A76vVHvxr07gk2aGAJhGHYNKnk658fS0-f-iZrfT3TarE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+20th+International+Conference+on+e-Science+%28e-Science%29&rft.atitle=There+is+Strength+in+Numbers%3A+A+Comprehensive+Study+of+Machine+Learning+Algorithms+for+Sex+Identification+on+Animal+Bone+Remains&rft.au=Schuler%2C+Nadine-Sarah&rft.au=Paxinos%2C+Ptolemaios+Dimitrios&rft.au=Yuan%2C+Jing&rft.au=von+Zastrow%2C+Maximilian&rft.date=2024-09-16&rft.pub=IEEE&rft.eissn=2325-3703&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2Fe-Science62913.2024.10678723&rft.externalDocID=10678723