Efficient Stage Features for Edge Detection
Edge detection is a fundamental task in machine vision that facilitates feature extraction and representation across various visual domains, such as panoptic segmentation, autonomous driving, and image recognition. Despite the superior performance of current neural network-based edge detectors, the...
Saved in:
Published in | 2024 9th International Conference on Signal and Image Processing (ICSIP) pp. 628 - 632 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
12.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Edge detection is a fundamental task in machine vision that facilitates feature extraction and representation across various visual domains, such as panoptic segmentation, autonomous driving, and image recognition. Despite the superior performance of current neural network-based edge detectors, the large parameter size renders edge detection models unsuitable for direct application in complex scenarios. Consequently, designing a compact edge detection network remains an imperative challenge. In this paper, we introduce the Efficient Stage Features Edge Detector (ESFED), a low-parameter, high-performance edge detector. ESFED is primarily composed of an efficient stage feature extractor, an upsampling network for edge features, and a feature fusion network for prediction, totaling only 51K parameters. It achieves 0.829 Optimal Dataset Scale (ODS) and 0.846 Optimal Image Scale (OIS) on the Unified Dataset for Edge Detection (UDED) dataset, demonstrating notable performance in comparison to other state-of-the-art models. |
---|---|
AbstractList | Edge detection is a fundamental task in machine vision that facilitates feature extraction and representation across various visual domains, such as panoptic segmentation, autonomous driving, and image recognition. Despite the superior performance of current neural network-based edge detectors, the large parameter size renders edge detection models unsuitable for direct application in complex scenarios. Consequently, designing a compact edge detection network remains an imperative challenge. In this paper, we introduce the Efficient Stage Features Edge Detector (ESFED), a low-parameter, high-performance edge detector. ESFED is primarily composed of an efficient stage feature extractor, an upsampling network for edge features, and a feature fusion network for prediction, totaling only 51K parameters. It achieves 0.829 Optimal Dataset Scale (ODS) and 0.846 Optimal Image Scale (OIS) on the Unified Dataset for Edge Detection (UDED) dataset, demonstrating notable performance in comparison to other state-of-the-art models. |
Author | Bao, Junqi Ji, Shucheng Yuan, Xiaochen |
Author_xml | – sequence: 1 givenname: Shucheng surname: Ji fullname: Ji, Shucheng email: p2213162@mpu.edu.mo organization: Macao Polytechnic University Macao SAR,Faculty of Applied Sciences,China – sequence: 2 givenname: Xiaochen surname: Yuan fullname: Yuan, Xiaochen email: xcyuan@mpu.edu.mo organization: Macao Polytechnic University Macao SAR,Faculty of Applied Sciences,China – sequence: 3 givenname: Junqi surname: Bao fullname: Bao, Junqi email: p2109422@mpu.edu.mo organization: Macao Polytechnic University Macao SAR,Faculty of Applied Sciences,China |
BookMark | eNqFjsEKgkAURV9RkJV_0GL2ob03TuqsTcldYHsRe8ZEaei06O9zUevgwoFzNncJs7ZrGUAQ-kSod3lS5KeQ4ph8iVL5hGFEKqYJuDrScbDHcVriFBwZKumFKqIFuMNwQ8RAYhAp7cA2bRpTG26tKGx1ZZFxZV89D6LpepFeRnNgy7U1XbuGeVPdB3a_XMEmS8_J0TPMXD5786j6d_n7EfzJH244NpE |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSIP61881.2024.10671481 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350350920 |
EISSN | 2642-6471 |
EndPage | 632 |
ExternalDocumentID | 10671481 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-ieee_primary_106714813 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 02 05:56:42 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106714813 |
ParticipantIDs | ieee_primary_10671481 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-12 |
PublicationDateYYYYMMDD | 2024-07-12 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | 2024 9th International Conference on Signal and Image Processing (ICSIP) |
PublicationTitleAbbrev | ICSIP |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203749 |
Score | 3.852864 |
Snippet | Edge detection is a fundamental task in machine vision that facilitates feature extraction and representation across various visual domains, such as panoptic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 628 |
SubjectTerms | Computational modeling Convolution Deep Learning Deep Neural Networks Detectors Edge detection Image edge detection Object segmentation Technological innovation Visualization |
Title | Efficient Stage Features for Edge Detection |
URI | https://ieeexplore.ieee.org/document/10671481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60J08qRnxU2YPXpMk-kuy5trSCpaBCbyW7O4oIqUhy8de7szEVRcHbMrA7y1zmm8c3A3DFfXCjC-uRGzoTy0qZWFeoYim1c0JnWhmq6N4u8tmDvFmp1SdZPXBhEDE0n2FCx1DLdxvbUqpsROPOPHz3wc5uoXVH1tomVASnUSq679ZJ9Wg-vpsv86wsKQ7kMumvf1ukEvzIdB8W_Q-69pGXpG1MYt9_DGf89xcPIPqi7LHl1hkdwg7WR0B7k58D45F5UPmEjABf6wNs5qEqmzgvucYmNGPVEQynk_vxLCZt69duCMW6VySOYVBvajwB5jJhKuktXCourcqNfpQFciHSyiqXmlOIfn3i7A_5OeyR3SiTmfEhDJq3Fi-8C27MZTD9B4ouiBc |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2hMsAEiCA-CnhgTZr4I43n0iqFNqpEkbpFcXwghJRWKFn49dgOKQKBxGZ58J3s4d4737sDuKGG3MhhaZAbauXzQihfFih8zqXWTEZSKPujO8_i9JHfrcTqU6zutDCI6IrPMLBL95ev12VjU2UD2-7MwHdDdnYNsE7iVq61TakwapupyK5eJ5SD6ehhuoijJLFMkPKgO-DbKBUXSSYHkHU-tAUkr0FTq6B8_9Ge8d9OHoL3Jdoji204OoIdrI7BTk5-cZpHYmDlMxIL-RpDsYkBq2Sszc4t1q4cq_KgPxkvR6lvreWbtg1F3hliJ9Cr1hWeAtERUwU3d5wIyksRK_nEh0gZC4tS6FCdgffrEed_7F_DXrqcz_LZNLu_gH17hzavGdE-9Oq3Bi9NQK7VlXuGD9yri2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+9th+International+Conference+on+Signal+and+Image+Processing+%28ICSIP%29&rft.atitle=Efficient+Stage+Features+for+Edge+Detection&rft.au=Ji%2C+Shucheng&rft.au=Yuan%2C+Xiaochen&rft.au=Bao%2C+Junqi&rft.date=2024-07-12&rft.pub=IEEE&rft.eissn=2642-6471&rft.spage=628&rft.epage=632&rft_id=info:doi/10.1109%2FICSIP61881.2024.10671481&rft.externalDocID=10671481 |