Identifying Functional Brain Networks under Naturalistic Paradigm via A Three-Dimensional Spatial Attention Convolution Autoencoder

Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4
Main Authors Ren, Yudan, Yin, Song, Liu, Zhengyang, Wang, Kexin, Le, Mingnan, Zhang, Wei, Li, Xiao
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data. However, many studies adopt two-dimensional (2D) approaches to extract spatio-temporal information from NfMRI data, which capture limited spatial information. Moreover, these models overlook the brain's attentional mechanisms, which hinders the accurate and comprehensive understanding of neural activities. To address this, we propose a three-dimensional convolutional autoencoder network incorporating the Convolutional Block Attention Module (SA-3DCAE) to efficiently identify complex FBNs from 3D NfMRI volumes. By comparisons with the state-of-art (SOTA) methods, the proposed SA-3DCAE is more effective and reliable in characterizing FBNs, indicating the effectiveness and feasibility of incorporating spatial information of fMRI data.
AbstractList Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data. However, many studies adopt two-dimensional (2D) approaches to extract spatio-temporal information from NfMRI data, which capture limited spatial information. Moreover, these models overlook the brain's attentional mechanisms, which hinders the accurate and comprehensive understanding of neural activities. To address this, we propose a three-dimensional convolutional autoencoder network incorporating the Convolutional Block Attention Module (SA-3DCAE) to efficiently identify complex FBNs from 3D NfMRI volumes. By comparisons with the state-of-art (SOTA) methods, the proposed SA-3DCAE is more effective and reliable in characterizing FBNs, indicating the effectiveness and feasibility of incorporating spatial information of fMRI data.
Author Yin, Song
Zhang, Wei
Ren, Yudan
Wang, Kexin
Li, Xiao
Le, Mingnan
Liu, Zhengyang
Author_xml – sequence: 1
  givenname: Yudan
  surname: Ren
  fullname: Ren, Yudan
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 2
  givenname: Song
  surname: Yin
  fullname: Yin, Song
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 3
  givenname: Zhengyang
  surname: Liu
  fullname: Liu, Zhengyang
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 4
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 5
  givenname: Mingnan
  surname: Le
  fullname: Le, Mingnan
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 6
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: zhang_wei@nwu.edu.cn
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
– sequence: 7
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Northwest University,School of Information Science & Technology,Xi'an,China
BookMark eNqFj81OwzAQhA0CiQJ5AyT8Agl2bDfJMS2tyKVCau-VlWzLQrKuHKeoZ16c8HdmLt9II81ortkFOQLG7qVIpBTFQ7WeVWZqMpGkItWJFFNlMqXOWFRkRa6MUFIplZ-ziSy0iXNt0isW9f2rGJVprYSesI-qAQq4OyHt-XKgOqAj2_KZt0h8BeHd-beeD9SA5ysbBm9b7APW_Nl62-C-40e0vOSbFw8QP2IH1P9UrA824MgyhK8JR3zu6Oja4duXQ3BAtRt7b9nlzrY9RL-8YXfLxWb-FCMAbA8eO-tP279_6p_4E7frWD8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI56570.2024.10635733
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350313338
EISSN 1945-8452
EndPage 4
ExternalDocumentID 10635733
Genre orig-research
GrantInformation_xml – fundername: Nature
  funderid: 10.13039/501100020487
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-ieee_primary_106357333
IEDL.DBID RIE
IngestDate Wed Aug 28 05:46:17 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106357333
ParticipantIDs ieee_primary_10635733
PublicationCentury 2000
PublicationDate 2024-May-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-27
  day: 27
PublicationDecade 2020
PublicationTitle 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
PublicationTitleAbbrev ISBI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 4.6122513
Snippet Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Biological system modeling
brain networks
CBAM
convolutional autoencoder (CAE)
Functional magnetic resonance imaging
functional magnetic resonance imaging (fMRI)
Naturalistic paradigm
Neural activity
Solid modeling
Three-dimensional displays
Two-dimensional displays
Title Identifying Functional Brain Networks under Naturalistic Paradigm via A Three-Dimensional Spatial Attention Convolution Autoencoder
URI https://ieeexplore.ieee.org/document/10635733
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rxVfFRZQ5eE5M05nFs1dIKhoIVeivZ7EaK2EhNevDqH3dmt6kPFLyEENhllpkwO4_vG4BzIVI3Up4i43UzyxcysEjN_HBDui84eSgYKHyXBIMH_3ZyOVmB1TUWRimlm8-Uza-6li-LrOJUGf3hzJ7W6TSgEcaxAWutEyrkC32KzVc9XK4TXwzve0Ou6jkUBnq-Xa_-NkdFu5H-NiS1AKZ75MmuSmFnbz-4Gf8t4Q60PhF7OFr7ol3YUPM92PpCNrgP7waTq3FN2Cd3ZrKA2OMhEZiYdvBXZFDZApNU83FoFmccpYtUzh6fcTlLsYtjUr-yrnksgKH0QJ5rTHaM3bI03ZNIYi1XRo3dqiyYLpP2bUG7fzO-Glh8pumLYbqY1sfpHEBzXszVISCpL5J0L5R5JvzckWmUySBWuXI9CrYidQStX7c4_uP7CWyydrgg74VtaJaLSp2Sny_FmdbvB-RCruI
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSLL4wP1Dl4bW1LbcsRVAIKDYmYcCPd7tYQIxhsOXj1jzuzC_iIJl6apsluZjPTzGPn-wbgXIjEjZSnyHjd1PKFDCxSMz_ckOIFJwsFA4W7cdB68G8Hl4M5WF1jYZRSuvlM2fyq7_LlJC24VEZ_OLOnVaursEaBdRQYuNaypELe0KfsfN7F5Tq1i_Z9o833eg4lgp5vL9Z_m6SiHUlzC-KFCKZ_5MkucmGnbz_YGf8t4zaUPzF72Ft6ox1YUeNd2PxCN7gH7waVq5FN2CSHZuqA2OAxERibhvBXZFjZFONEM3JoHmfsJdNEjh6fcTZKsI59MgBlXfNgAEPqgTzZmCwZ63lu-ieRxJrNzRrrRT5hwkzatwyV5k3_qmXxmYYvhutiuDhOdR9K48lYHQCSAiNJkaHMUuFnjkyiVAY1lSnXo3QrUodQ_nWLoz--n8F6q9_tDDvt-O4YNlhTfD3vhRUo5dNCnZDXz8Wp1vUHLnOyLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Identifying+Functional+Brain+Networks+under+Naturalistic+Paradigm+via+A+Three-Dimensional+Spatial+Attention+Convolution+Autoencoder&rft.au=Ren%2C+Yudan&rft.au=Yin%2C+Song&rft.au=Liu%2C+Zhengyang&rft.au=Wang%2C+Kexin&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI56570.2024.10635733&rft.externalDocID=10635733