Identifying Functional Brain Networks under Naturalistic Paradigm via A Three-Dimensional Spatial Attention Convolution Autoencoder
Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data...
Saved in:
Published in | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
27.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data. However, many studies adopt two-dimensional (2D) approaches to extract spatio-temporal information from NfMRI data, which capture limited spatial information. Moreover, these models overlook the brain's attentional mechanisms, which hinders the accurate and comprehensive understanding of neural activities. To address this, we propose a three-dimensional convolutional autoencoder network incorporating the Convolutional Block Attention Module (SA-3DCAE) to efficiently identify complex FBNs from 3D NfMRI volumes. By comparisons with the state-of-art (SOTA) methods, the proposed SA-3DCAE is more effective and reliable in characterizing FBNs, indicating the effectiveness and feasibility of incorporating spatial information of fMRI data. |
---|---|
AbstractList | Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain networks (FBNs) due to its dynamic and multimodal nature. Various deep learning (DL) models have become the dominant means of analyzing NfMRI data. However, many studies adopt two-dimensional (2D) approaches to extract spatio-temporal information from NfMRI data, which capture limited spatial information. Moreover, these models overlook the brain's attentional mechanisms, which hinders the accurate and comprehensive understanding of neural activities. To address this, we propose a three-dimensional convolutional autoencoder network incorporating the Convolutional Block Attention Module (SA-3DCAE) to efficiently identify complex FBNs from 3D NfMRI volumes. By comparisons with the state-of-art (SOTA) methods, the proposed SA-3DCAE is more effective and reliable in characterizing FBNs, indicating the effectiveness and feasibility of incorporating spatial information of fMRI data. |
Author | Yin, Song Zhang, Wei Ren, Yudan Wang, Kexin Li, Xiao Le, Mingnan Liu, Zhengyang |
Author_xml | – sequence: 1 givenname: Yudan surname: Ren fullname: Ren, Yudan organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 2 givenname: Song surname: Yin fullname: Yin, Song organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 3 givenname: Zhengyang surname: Liu fullname: Liu, Zhengyang organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 4 givenname: Kexin surname: Wang fullname: Wang, Kexin organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 5 givenname: Mingnan surname: Le fullname: Le, Mingnan organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 6 givenname: Wei surname: Zhang fullname: Zhang, Wei email: zhang_wei@nwu.edu.cn organization: Northwest University,School of Information Science & Technology,Xi'an,China – sequence: 7 givenname: Xiao surname: Li fullname: Li, Xiao organization: Northwest University,School of Information Science & Technology,Xi'an,China |
BookMark | eNqFj81OwzAQhA0CiQJ5AyT8Agl2bDfJMS2tyKVCau-VlWzLQrKuHKeoZ16c8HdmLt9II81ortkFOQLG7qVIpBTFQ7WeVWZqMpGkItWJFFNlMqXOWFRkRa6MUFIplZ-ziSy0iXNt0isW9f2rGJVprYSesI-qAQq4OyHt-XKgOqAj2_KZt0h8BeHd-beeD9SA5ysbBm9b7APW_Nl62-C-40e0vOSbFw8QP2IH1P9UrA824MgyhK8JR3zu6Oja4duXQ3BAtRt7b9nlzrY9RL-8YXfLxWb-FCMAbA8eO-tP279_6p_4E7frWD8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI56570.2024.10635733 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350313338 |
EISSN | 1945-8452 |
EndPage | 4 |
ExternalDocumentID | 10635733 |
Genre | orig-research |
GrantInformation_xml | – fundername: Nature funderid: 10.13039/501100020487 |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-ieee_primary_106357333 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 28 05:46:17 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106357333 |
ParticipantIDs | ieee_primary_10635733 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-27 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 4.6122513 |
Snippet | Functional Magnetic Resonance Imaging under the naturalistic paradigm (NfMRI) has great advantages in triggering complex and interactive functional brain... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Analytical models Biological system modeling brain networks CBAM convolutional autoencoder (CAE) Functional magnetic resonance imaging functional magnetic resonance imaging (fMRI) Naturalistic paradigm Neural activity Solid modeling Three-dimensional displays Two-dimensional displays |
Title | Identifying Functional Brain Networks under Naturalistic Paradigm via A Three-Dimensional Spatial Attention Convolution Autoencoder |
URI | https://ieeexplore.ieee.org/document/10635733 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rxVfFRZQ5eE5M05nFs1dIKhoIVeivZ7EaK2EhNevDqH3dmt6kPFLyEENhllpkwO4_vG4BzIVI3Up4i43UzyxcysEjN_HBDui84eSgYKHyXBIMH_3ZyOVmB1TUWRimlm8-Uza-6li-LrOJUGf3hzJ7W6TSgEcaxAWutEyrkC32KzVc9XK4TXwzve0Ou6jkUBnq-Xa_-NkdFu5H-NiS1AKZ75MmuSmFnbz-4Gf8t4Q60PhF7OFr7ol3YUPM92PpCNrgP7waTq3FN2Cd3ZrKA2OMhEZiYdvBXZFDZApNU83FoFmccpYtUzh6fcTlLsYtjUr-yrnksgKH0QJ5rTHaM3bI03ZNIYi1XRo3dqiyYLpP2bUG7fzO-Glh8pumLYbqY1sfpHEBzXszVISCpL5J0L5R5JvzckWmUySBWuXI9CrYidQStX7c4_uP7CWyydrgg74VtaJaLSp2Sny_FmdbvB-RCruI |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSLL4wP1Dl4bW1LbcsRVAIKDYmYcCPd7tYQIxhsOXj1jzuzC_iIJl6apsluZjPTzGPn-wbgXIjEjZSnyHjd1PKFDCxSMz_ckOIFJwsFA4W7cdB68G8Hl4M5WF1jYZRSuvlM2fyq7_LlJC24VEZ_OLOnVaursEaBdRQYuNaypELe0KfsfN7F5Tq1i_Z9o833eg4lgp5vL9Z_m6SiHUlzC-KFCKZ_5MkucmGnbz_YGf8t4zaUPzF72Ft6ox1YUeNd2PxCN7gH7waVq5FN2CSHZuqA2OAxERibhvBXZFjZFONEM3JoHmfsJdNEjh6fcTZKsI59MgBlXfNgAEPqgTzZmCwZ63lu-ieRxJrNzRrrRT5hwkzatwyV5k3_qmXxmYYvhutiuDhOdR9K48lYHQCSAiNJkaHMUuFnjkyiVAY1lSnXo3QrUodQ_nWLoz--n8F6q9_tDDvt-O4YNlhTfD3vhRUo5dNCnZDXz8Wp1vUHLnOyLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Identifying+Functional+Brain+Networks+under+Naturalistic+Paradigm+via+A+Three-Dimensional+Spatial+Attention+Convolution+Autoencoder&rft.au=Ren%2C+Yudan&rft.au=Yin%2C+Song&rft.au=Liu%2C+Zhengyang&rft.au=Wang%2C+Kexin&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI56570.2024.10635733&rft.externalDocID=10635733 |