Risk-Sensitive Extended Kalman Filter
Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic...
Saved in:
Published in | 2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 10450 - 10456 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties. |
---|---|
AbstractList | Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties. |
Author | Righetti, Ludovic Jordana, Armand Arlaud, Etienne Meduri, Avadesh Carpentier, Justin |
Author_xml | – sequence: 1 givenname: Armand surname: Jordana fullname: Jordana, Armand email: aj2988@nyu.edu organization: New York University,New York – sequence: 2 givenname: Avadesh surname: Meduri fullname: Meduri, Avadesh email: am9789@nyu.edu organization: New York University,New York – sequence: 3 givenname: Etienne surname: Arlaud fullname: Arlaud, Etienne organization: PSL Research University,École Normale supérieure, CNRS,Département D'informatique de l'ENS,Paris,France – sequence: 4 givenname: Justin surname: Carpentier fullname: Carpentier, Justin email: justin.carpentier@inria.fr organization: PSL Research University,École Normale supérieure, CNRS,Département D'informatique de l'ENS,Paris,France – sequence: 5 givenname: Ludovic surname: Righetti fullname: Righetti, Ludovic email: lr114@nyu.edu organization: New York University,New York |
BookMark | eNrjYmDJy89LZWCQNzTQMzQ0sNT3dA5yNDU3NDHXMzIwMtEzNDAzNDQyM2Nk4LU0t7QwNjUwtjAxNTfhZFANyizO1g1OzSvOLMksS1VwrShJzUtJTVHwTszJTcxTcMvMKUkt4mFgTUvMKU7lhdLcDDJuriHOHrqZqamp8QVFmbmJRZXxMFuMCUgDAPuNLwU |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA57147.2024.10611266 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350384574 |
EndPage | 10456 |
ExternalDocumentID | 10611266 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-ieee_primary_106112663 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 14 05:40:32 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106112663 |
ParticipantIDs | ieee_primary_10611266 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 3.8401124 |
Snippet | Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 10450 |
SubjectTerms | Estimation Kalman filters Quadrupedal robots Real-time systems Robustness Service robots Uncertainty |
Title | Risk-Sensitive Extended Kalman Filter |
URI | https://ieeexplore.ieee.org/document/10611266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbVIS0wBVj26iabmycAOioEB6AzIZF1T05Qk09TUtKQ08DWdvn5mHqEmXhGmEdDN6uC9MKmpqeDFZ6l6ICZ4Lj8lP7kUNFSmD-q-GAJrFGYGZnNLS8hmLeiaLUMDS31P5yBHU3NDE3Ngt8_IRA-mGuXeFHC14SbA4AezELJaJFuvtCRJL7kK7SxGol0kyCCK2KGnEACve4QYmFLzRBhUgzKLs3WDQUvSQYWYgit0gFvBOzEnNzFPwS0TNDUuyiDj5hri7KELsie-AHLaRDzMCmMxBpa8_LxUCQYFC2MTo0RgzzI12dLYxCw11SI5ySQtzdDc2NzSNMU81VySQRSrEVI4xKUZuEAhBpoUNzSWYWApKSpNlQXWtSVJcuAwBgBgwoKY |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbVIS0wBVj26iabmycAOioEB6AzIZF1T05Qk09TUtKQ08DWdvn5mHqEmXhGmEdDN6uC9MKmpqeDFZ6l6ICZ4Lj8lP7kUNFSmD-q-GAJrFGYGVmDD2sIMsl0LumrL0MBS39M5yNHU3NDEHNjxMzLRg6lHuTkFXHG4CTD4wayErBfJ1istSdJLrkI7jZFoNwkyiCL26CkEwGsfIQam1DwRBtWgzOJs3WDQonRQMabgCh3iVvBOzMlNzFNwywRNjosyyLi5hjh76ILsiS-AnDcRD7PCWIyBJS8_L1WCQcHC2MQoEdi3TE22NDYxS021SE4ySUszNDc2tzRNMU81l2QQxWqEFA5xeQZOjxBfn3gfTz9vaQYuUOiBpsgNjWUYWEqKSlNlgTVvSZIcOLwBaUKF4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Risk-Sensitive+Extended+Kalman+Filter&rft.au=Jordana%2C+Armand&rft.au=Meduri%2C+Avadesh&rft.au=Arlaud%2C+Etienne&rft.au=Carpentier%2C+Justin&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=10450&rft.epage=10456&rft_id=info:doi/10.1109%2FICRA57147.2024.10611266&rft.externalDocID=10611266 |