Risk-Sensitive Extended Kalman Filter

Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 10450 - 10456
Main Authors Jordana, Armand, Meduri, Avadesh, Arlaud, Etienne, Carpentier, Justin, Righetti, Ludovic
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties.
AbstractList Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot's dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties.
Author Righetti, Ludovic
Jordana, Armand
Arlaud, Etienne
Meduri, Avadesh
Carpentier, Justin
Author_xml – sequence: 1
  givenname: Armand
  surname: Jordana
  fullname: Jordana, Armand
  email: aj2988@nyu.edu
  organization: New York University,New York
– sequence: 2
  givenname: Avadesh
  surname: Meduri
  fullname: Meduri, Avadesh
  email: am9789@nyu.edu
  organization: New York University,New York
– sequence: 3
  givenname: Etienne
  surname: Arlaud
  fullname: Arlaud, Etienne
  organization: PSL Research University,École Normale supérieure, CNRS,Département D'informatique de l'ENS,Paris,France
– sequence: 4
  givenname: Justin
  surname: Carpentier
  fullname: Carpentier, Justin
  email: justin.carpentier@inria.fr
  organization: PSL Research University,École Normale supérieure, CNRS,Département D'informatique de l'ENS,Paris,France
– sequence: 5
  givenname: Ludovic
  surname: Righetti
  fullname: Righetti, Ludovic
  email: lr114@nyu.edu
  organization: New York University,New York
BookMark eNrjYmDJy89LZWCQNzTQMzQ0sNT3dA5yNDU3NDHXMzIwMtEzNDAzNDQyM2Nk4LU0t7QwNjUwtjAxNTfhZFANyizO1g1OzSvOLMksS1VwrShJzUtJTVHwTszJTcxTcMvMKUkt4mFgTUvMKU7lhdLcDDJuriHOHrqZqamp8QVFmbmJRZXxMFuMCUgDAPuNLwU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10611266
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 10456
ExternalDocumentID 10611266
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-ieee_primary_106112663
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106112663
ParticipantIDs ieee_primary_10611266
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 3.8401124
Snippet Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only...
SourceID ieee
SourceType Publisher
StartPage 10450
SubjectTerms Estimation
Kalman filters
Quadrupedal robots
Real-time systems
Robustness
Service robots
Uncertainty
Title Risk-Sensitive Extended Kalman Filter
URI https://ieeexplore.ieee.org/document/10611266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbVIS0wBVj26iabmycAOioEB6AzIZF1T05Qk09TUtKQ08DWdvn5mHqEmXhGmEdDN6uC9MKmpqeDFZ6l6ICZ4Lj8lP7kUNFSmD-q-GAJrFGYGZnNLS8hmLeiaLUMDS31P5yBHU3NDE3Ngt8_IRA-mGuXeFHC14SbA4AezELJaJFuvtCRJL7kK7SxGol0kyCCK2KGnEACve4QYmFLzRBhUgzKLs3WDQUvSQYWYgit0gFvBOzEnNzFPwS0TNDUuyiDj5hri7KELsie-AHLaRDzMCmMxBpa8_LxUCQYFC2MTo0RgzzI12dLYxCw11SI5ySQtzdDc2NzSNMU81VySQRSrEVI4xKUZuEAhBpoUNzSWYWApKSpNlQXWtSVJcuAwBgBgwoKY
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbVIS0wBVj26iabmycAOioEB6AzIZF1T05Qk09TUtKQ08DWdvn5mHqEmXhGmEdDN6uC9MKmpqeDFZ6l6ICZ4Lj8lP7kUNFSmD-q-GAJrFGYGVmDD2sIMsl0LumrL0MBS39M5yNHU3NDEHNjxMzLRg6lHuTkFXHG4CTD4wayErBfJ1istSdJLrkI7jZFoNwkyiCL26CkEwGsfIQam1DwRBtWgzOJs3WDQonRQMabgCh3iVvBOzMlNzFNwywRNjosyyLi5hjh76ILsiS-AnDcRD7PCWIyBJS8_L1WCQcHC2MQoEdi3TE22NDYxS021SE4ySUszNDc2tzRNMU81l2QQxWqEFA5xeQZOjxBfn3gfTz9vaQYuUOiBpsgNjWUYWEqKSlNlgTVvSZIcOLwBaUKF4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Risk-Sensitive+Extended+Kalman+Filter&rft.au=Jordana%2C+Armand&rft.au=Meduri%2C+Avadesh&rft.au=Arlaud%2C+Etienne&rft.au=Carpentier%2C+Justin&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=10450&rft.epage=10456&rft_id=info:doi/10.1109%2FICRA57147.2024.10611266&rft.externalDocID=10611266