Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion
We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the a...
Saved in:
Published in | 2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 1420 - 1427 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to coordinate rhythmic behavior among different oscillators to track velocity commands, while at the same time override these commands to avoid collisions with the environment. We investigate several open robotics and neuroscience questions: 1) What is the role of explicit interoscillator couplings between oscillators, and can such coupling improve sim-to-real transfer for navigation robustness? 2) What are the effects of using a memory-enabled vs. a memory-free policy network with respect to robustness, energy-efficiency, and tracking performance in sim-to-real navigation tasks? 3) How do animals manage to tolerate high sensorimotor delays, yet still produce smooth and robust gaits? To answer these questions, we train our perceptive locomotion policies in simulation and perform sim-to-real transfers to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that the CPG, explicit interoscillator couplings, and memory-enabled policy representations are all beneficial for energy efficiency, robustness to noise and sensory delays of 90 ms, and tracking performance for successful sim-to-real transfer for navigation tasks. |
---|---|
AbstractList | We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to coordinate rhythmic behavior among different oscillators to track velocity commands, while at the same time override these commands to avoid collisions with the environment. We investigate several open robotics and neuroscience questions: 1) What is the role of explicit interoscillator couplings between oscillators, and can such coupling improve sim-to-real transfer for navigation robustness? 2) What are the effects of using a memory-enabled vs. a memory-free policy network with respect to robustness, energy-efficiency, and tracking performance in sim-to-real navigation tasks? 3) How do animals manage to tolerate high sensorimotor delays, yet still produce smooth and robust gaits? To answer these questions, we train our perceptive locomotion policies in simulation and perform sim-to-real transfers to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that the CPG, explicit interoscillator couplings, and memory-enabled policy representations are all beneficial for energy efficiency, robustness to noise and sensory delays of 90 ms, and tracking performance for successful sim-to-real transfer for navigation tasks. |
Author | Shafiee, Milad Ijspeert, Auke Bellegarda, Guillaume |
Author_xml | – sequence: 1 givenname: Guillaume surname: Bellegarda fullname: Bellegarda, Guillaume email: guillaume.bellegarda@epfl.ch organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory – sequence: 2 givenname: Milad surname: Shafiee fullname: Shafiee, Milad email: milad.shafiee@epfl.ch organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory – sequence: 3 givenname: Auke surname: Ijspeert fullname: Ijspeert, Auke email: auke.ijspeert@epfl.ch organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory |
BookMark | eNqFjs0KgkAURieoRX9vEDQvoM3omNoupCxwYRFtWsiQ1xiwmbiOC98-oVq3Oh8cPjgTMtRGAyFLzlzOWbw6JudtEHIRuh7zhMvZmnPuRQMyj8M48gPmRyIIxZjcrqppZU2TPHXO2YZmIFEr_aAJaIu9yKW1gJqmoAGlNdjQyiD93OrOSVtVQklPrSyxffUrM3fzNFYZPSOjStYNzL-cksV-d0kOjgKA4oXqKbErfm3-H_0GNAZCuA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA57147.2024.10611128 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350384574 |
EndPage | 1427 |
ExternalDocumentID | 10611128 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-ieee_primary_106111283 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 14 05:40:32 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106111283 |
ParticipantIDs | ieee_primary_10611128 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 3.8493211 |
Snippet | We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1420 |
SubjectTerms | Couplings Delays Navigation Robot kinematics Robot sensing systems Robustness Sensors |
Title | Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion |
URI | https://ieeexplore.ieee.org/document/10611128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1sT55UrPhRZQ9ek27Mpul6k2BbpZRYVAoeymazK8WSlJo96K93PxJFUfA2hGwy7B7em9mZNwDnPIplxkxegwmsAxSSexp3mKfJb8QlzijJbIHstD9-ILfzaF43q9teGCGELT4TvjHtXX5ecmVSZT0Tvmh-MGhBK6bUNWvVNVsBpr2bZHYVxQGJddh3Qfzm7W9zUyxsDHdg2vzQVYu8-KrKfP7-Q4vx3x7tQuerQw-ln9izB1ui2Ienx-WrYiuUpCNvNrlEtXbqM6pTuCi1YpoFclrTZs4O0pwVuWWrN2-klrnI0Z1i-UattTUpeenm_HSgO7y-T8ae8W6xdhoVi8ax8ADaRVmIQ0BYUwsuogFlmnRIilksQ6nhm0jNkbDoH0Hn108c__H8BLbNPpur9CDsQrvaKHGqEbrKzuzJfACJKZWU |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ1oPehJjRg_qu7BKxQESvFmiC1VJNhU08QDWWDXNDbQVPagv979AI1GE28TwsJk9_DezM68ATjPXY9mWOQ1MDF5gOIUOscdrHPy6-bUzHwnkwWycT98cG5m7qxpVpe9MIQQWXxGDGHKu_yiyplIlfVE-ML5wWAdNlxBLFS7VlO1ZZl-bxxMrlzPcjwe-F04Rvv-t8kpEjiG2xC3v1T1Ii8GqzMjf_-hxvhvn3ZA--rRQ8kn-uzCGin34Olx_srwAgXJSJ9El6hRT31GTRIXJVJOs0RKbVpM2kGctSK1bPGmj9i8IAW6Z7hYsSW3oiqv1KQfDbrD62kQ6sK7dKlUKtLWMXsfOmVVkgNAJicXOXEHPua0g_om9qhNOYA7lLMkk_QPQfv1E0d_PD-DzXB6F6XROL49hi2x5-Ji3bK70KlXjJxwvK6zU3lKH4zamOE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Visual+CPG-RL%3A+Learning+Central+Pattern+Generators+for+Visually-Guided+Quadruped+Locomotion&rft.au=Bellegarda%2C+Guillaume&rft.au=Shafiee%2C+Milad&rft.au=Ijspeert%2C+Auke&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=1420&rft.epage=1427&rft_id=info:doi/10.1109%2FICRA57147.2024.10611128&rft.externalDocID=10611128 |