Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion

We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the a...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 1420 - 1427
Main Authors Bellegarda, Guillaume, Shafiee, Milad, Ijspeert, Auke
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to coordinate rhythmic behavior among different oscillators to track velocity commands, while at the same time override these commands to avoid collisions with the environment. We investigate several open robotics and neuroscience questions: 1) What is the role of explicit interoscillator couplings between oscillators, and can such coupling improve sim-to-real transfer for navigation robustness? 2) What are the effects of using a memory-enabled vs. a memory-free policy network with respect to robustness, energy-efficiency, and tracking performance in sim-to-real navigation tasks? 3) How do animals manage to tolerate high sensorimotor delays, yet still produce smooth and robust gaits? To answer these questions, we train our perceptive locomotion policies in simulation and perform sim-to-real transfers to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that the CPG, explicit interoscillator couplings, and memory-enabled policy representations are all beneficial for energy efficiency, robustness to noise and sensory delays of 90 ms, and tracking performance for successful sim-to-real transfer for navigation tasks.
AbstractList We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to coordinate rhythmic behavior among different oscillators to track velocity commands, while at the same time override these commands to avoid collisions with the environment. We investigate several open robotics and neuroscience questions: 1) What is the role of explicit interoscillator couplings between oscillators, and can such coupling improve sim-to-real transfer for navigation robustness? 2) What are the effects of using a memory-enabled vs. a memory-free policy network with respect to robustness, energy-efficiency, and tracking performance in sim-to-real navigation tasks? 3) How do animals manage to tolerate high sensorimotor delays, yet still produce smooth and robust gaits? To answer these questions, we train our perceptive locomotion policies in simulation and perform sim-to-real transfers to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that the CPG, explicit interoscillator couplings, and memory-enabled policy representations are all beneficial for energy efficiency, robustness to noise and sensory delays of 90 ms, and tracking performance for successful sim-to-real transfer for navigation tasks.
Author Shafiee, Milad
Ijspeert, Auke
Bellegarda, Guillaume
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Bellegarda
  fullname: Bellegarda, Guillaume
  email: guillaume.bellegarda@epfl.ch
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory
– sequence: 2
  givenname: Milad
  surname: Shafiee
  fullname: Shafiee, Milad
  email: milad.shafiee@epfl.ch
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory
– sequence: 3
  givenname: Auke
  surname: Ijspeert
  fullname: Ijspeert, Auke
  email: auke.ijspeert@epfl.ch
  organization: Ecole Polytechnique Federale de Lausanne (EPFL),BioRobotics Laboratory
BookMark eNqFjs0KgkAURieoRX9vEDQvoM3omNoupCxwYRFtWsiQ1xiwmbiOC98-oVq3Oh8cPjgTMtRGAyFLzlzOWbw6JudtEHIRuh7zhMvZmnPuRQMyj8M48gPmRyIIxZjcrqppZU2TPHXO2YZmIFEr_aAJaIu9yKW1gJqmoAGlNdjQyiD93OrOSVtVQklPrSyxffUrM3fzNFYZPSOjStYNzL-cksV-d0kOjgKA4oXqKbErfm3-H_0GNAZCuA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10611128
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 1427
ExternalDocumentID 10611128
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-ieee_primary_106111283
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106111283
ParticipantIDs ieee_primary_10611128
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 3.8493211
Snippet We present a framework for learning visually-guided quadruped locomotion by integrating exteroceptive sensing and central pattern generators (CPGs), i.e....
SourceID ieee
SourceType Publisher
StartPage 1420
SubjectTerms Couplings
Delays
Navigation
Robot kinematics
Robot sensing systems
Robustness
Sensors
Title Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion
URI https://ieeexplore.ieee.org/document/10611128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1sT55UrPhRZQ9ek27Mpul6k2BbpZRYVAoeymazK8WSlJo96K93PxJFUfA2hGwy7B7em9mZNwDnPIplxkxegwmsAxSSexp3mKfJb8QlzijJbIHstD9-ILfzaF43q9teGCGELT4TvjHtXX5ecmVSZT0Tvmh-MGhBK6bUNWvVNVsBpr2bZHYVxQGJddh3Qfzm7W9zUyxsDHdg2vzQVYu8-KrKfP7-Q4vx3x7tQuerQw-ln9izB1ui2Ienx-WrYiuUpCNvNrlEtXbqM6pTuCi1YpoFclrTZs4O0pwVuWWrN2-klrnI0Z1i-UattTUpeenm_HSgO7y-T8ae8W6xdhoVi8ax8ADaRVmIQ0BYUwsuogFlmnRIilksQ6nhm0jNkbDoH0Hn108c__H8BLbNPpur9CDsQrvaKHGqEbrKzuzJfACJKZWU
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ1oPehJjRg_qu7BKxQESvFmiC1VJNhU08QDWWDXNDbQVPagv979AI1GE28TwsJk9_DezM68ATjPXY9mWOQ1MDF5gOIUOscdrHPy6-bUzHwnkwWycT98cG5m7qxpVpe9MIQQWXxGDGHKu_yiyplIlfVE-ML5wWAdNlxBLFS7VlO1ZZl-bxxMrlzPcjwe-F04Rvv-t8kpEjiG2xC3v1T1Ii8GqzMjf_-hxvhvn3ZA--rRQ8kn-uzCGin34Olx_srwAgXJSJ9El6hRT31GTRIXJVJOs0RKbVpM2kGctSK1bPGmj9i8IAW6Z7hYsSW3oiqv1KQfDbrD62kQ6sK7dKlUKtLWMXsfOmVVkgNAJicXOXEHPua0g_om9qhNOYA7lLMkk_QPQfv1E0d_PD-DzXB6F6XROL49hi2x5-Ji3bK70KlXjJxwvK6zU3lKH4zamOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Visual+CPG-RL%3A+Learning+Central+Pattern+Generators+for+Visually-Guided+Quadruped+Locomotion&rft.au=Bellegarda%2C+Guillaume&rft.au=Shafiee%2C+Milad&rft.au=Ijspeert%2C+Auke&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=1420&rft.epage=1427&rft_id=info:doi/10.1109%2FICRA57147.2024.10611128&rft.externalDocID=10611128