Using Machine Learning to Investigate Potential Image Bias in News Articles

Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bia...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) pp. 174 - 179
Main Authors Hili, Gabriel, Seychell, Dylan
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bias manually is challenging and time-consuming, as determining bias requires nuanced human judgement. This paper proposes a simple yet effective technique for investigating picture-related bias in online newspaper articles by utilising BLIP (Bootstrapping Language-Image Pretraining), a Vision-Language Pretraining model. We scraped six online newspapers to demonstrate this technique, achieving promising results for adopting this methodology to automate media bias research. The technique enables large-scale analysis of historical articles to uncover previously undetected biases, complementing modern studies reliant on manual work. It also facilitates monitoring to maintain news integrity. Furthermore, this research highlights innovative applications of AI for journalism to augment human analysis. This study illustrates how AI can transform the media landscape by automating bias analysis to improve news quality and reader trust.
AbstractList Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bias manually is challenging and time-consuming, as determining bias requires nuanced human judgement. This paper proposes a simple yet effective technique for investigating picture-related bias in online newspaper articles by utilising BLIP (Bootstrapping Language-Image Pretraining), a Vision-Language Pretraining model. We scraped six online newspapers to demonstrate this technique, achieving promising results for adopting this methodology to automate media bias research. The technique enables large-scale analysis of historical articles to uncover previously undetected biases, complementing modern studies reliant on manual work. It also facilitates monitoring to maintain news integrity. Furthermore, this research highlights innovative applications of AI for journalism to augment human analysis. This study illustrates how AI can transform the media landscape by automating bias analysis to improve news quality and reader trust.
Author Hili, Gabriel
Seychell, Dylan
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Hili
  fullname: Hili, Gabriel
  email: gabriel.hili.20@um.edu.mt
  organization: University of Malta,Department of Artificial Intelligence,L-Imsida,Malta
– sequence: 2
  givenname: Dylan
  surname: Seychell
  fullname: Seychell, Dylan
  email: dylan.seychell@ieee.org
  organization: University of Malta,Department of Artificial Intelligence,L-Imsida,Malta
BookMark eNqFjkFPAjEQRkeDiaD7DzxMvLNMd2lpj0iWQATkoGfSkHEds3TJtpHw79VEzp6-5L3k5RtAL7SBAR4V5UqRG62rVTV72WhjjMsLKsa5IkNWk72CzE2cLTWVdkKFvoZ-obQd2rFVt5DF-ElEPwnjSt2H57cooca1339IYFyx78IvSC0uwxfHJLVPjNs2cUjiG1wefM34JD6iBNzwKeK0S7JvON7DzbtvImd_ewcP8-p1thgKM--OnRx8d95dfpb_6G9v4kLp
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/MELECON56669.2024.10608508
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350387025
EISSN 2158-8481
EndPage 179
ExternalDocumentID 10608508
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-ieee_primary_106085083
IEDL.DBID RIE
IngestDate Mon Nov 04 12:06:04 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106085083
ParticipantIDs ieee_primary_10608508
PublicationCentury 2000
PublicationDate 2024-June-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-25
  day: 25
PublicationDecade 2020
PublicationTitle 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)
PublicationTitleAbbrev MELECON
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096935
Score 3.8537955
Snippet Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process,...
SourceID ieee
SourceType Publisher
StartPage 174
SubjectTerms Computer Vision
keyword extraction
Manuals
Media Monitoring
NER tagging
News Analysis
Philosophical considerations
Pipelines
Sentiment analysis
Technological innovation
Transforms
Visualization
VLP
Title Using Machine Learning to Investigate Potential Image Bias in News Articles
URI https://ieeexplore.ieee.org/document/10608508
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTkxQEcSjoBtYExrHeY1QtSqPVAwgdati54IqIEGQLPx6bCchAoHEZluydbLlu7P9fZ8BznI5cUkKbrtShrbyfp4tQubZGfP0M1SY-0auKVkGiwd-vfJXLVndcGGIyIDPyNFF85aflbLWV2VqhwdaYS0awCCM44as1V-oqGQ89vxWWFTVzpPZrf4NUCUsgaakMO50A3z7SsVEkvkOLDsbGgDJk1NXwpEfP-QZ_23kLlg9aQ_vvsLRCLao2IMbAwnAxEAmCVs11UesSuwVNlS_stKoofQZr16Ug8HLTfqOmwK1C8SLFjtnwXg-u58ubG3N-rWRqVh3hnj7MCzKgg4AOedZoE4YLHeJC5WcTNJIMp5HJNJUhuIQrF-HOPqj_Ri29bxq6BTzxzCs3mo6UUG6EqdmcT4BBe-UWg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGWACRBAfBTywJjSO88EIqFVLk4ihSN2i2HFQBU0QJAu_Hp-TEIFAYrMt2TrZ8t3Zfu8Z4DIXI1sKzkxbCN9U3s8xuU8dM6MOPkP5uavlmqLYmz6y-6W7bMnqmgsjpdTgM2lhUb_lZ6Wo8apM7XAPFdaCTdhSiXXgNXSt_kpFpePXjttKi6raVTQO8T9AlbJ4SEqhzOqG-PaZio4lk12IOysaCMmzVVfcEh8_BBr_beYeGD1tjzx8BaR92JDFAcw1KIBEGjQpSaun-kSqkvQaG6pfWSFuKH0hs7VyMeR2lb6TVUHQCZKbFj1nwHAyXtxNTbQmeW2EKpLOEOcQBkVZyCMgjLHMU2cMmtuScZWejNJAUJYHkqep8PkxGL8OcfJH-wVsTxdRmISzeH4KOzjHCKSi7hAG1Vstz1TIrvi5XqhP976XpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+22nd+Mediterranean+Electrotechnical+Conference+%28MELECON%29&rft.atitle=Using+Machine+Learning+to+Investigate+Potential+Image+Bias+in+News+Articles&rft.au=Hili%2C+Gabriel&rft.au=Seychell%2C+Dylan&rft.date=2024-06-25&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=174&rft.epage=179&rft_id=info:doi/10.1109%2FMELECON56669.2024.10608508&rft.externalDocID=10608508