Using Machine Learning to Investigate Potential Image Bias in News Articles
Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bia...
Saved in:
Published in | 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) pp. 174 - 179 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
25.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bias manually is challenging and time-consuming, as determining bias requires nuanced human judgement. This paper proposes a simple yet effective technique for investigating picture-related bias in online newspaper articles by utilising BLIP (Bootstrapping Language-Image Pretraining), a Vision-Language Pretraining model. We scraped six online newspapers to demonstrate this technique, achieving promising results for adopting this methodology to automate media bias research. The technique enables large-scale analysis of historical articles to uncover previously undetected biases, complementing modern studies reliant on manual work. It also facilitates monitoring to maintain news integrity. Furthermore, this research highlights innovative applications of AI for journalism to augment human analysis. This study illustrates how AI can transform the media landscape by automating bias analysis to improve news quality and reader trust. |
---|---|
AbstractList | Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process, altering the perception of an event or issue. A newspaper article may introduce bias in numerous ways, including image use. Analysing media bias manually is challenging and time-consuming, as determining bias requires nuanced human judgement. This paper proposes a simple yet effective technique for investigating picture-related bias in online newspaper articles by utilising BLIP (Bootstrapping Language-Image Pretraining), a Vision-Language Pretraining model. We scraped six online newspapers to demonstrate this technique, achieving promising results for adopting this methodology to automate media bias research. The technique enables large-scale analysis of historical articles to uncover previously undetected biases, complementing modern studies reliant on manual work. It also facilitates monitoring to maintain news integrity. Furthermore, this research highlights innovative applications of AI for journalism to augment human analysis. This study illustrates how AI can transform the media landscape by automating bias analysis to improve news quality and reader trust. |
Author | Hili, Gabriel Seychell, Dylan |
Author_xml | – sequence: 1 givenname: Gabriel surname: Hili fullname: Hili, Gabriel email: gabriel.hili.20@um.edu.mt organization: University of Malta,Department of Artificial Intelligence,L-Imsida,Malta – sequence: 2 givenname: Dylan surname: Seychell fullname: Seychell, Dylan email: dylan.seychell@ieee.org organization: University of Malta,Department of Artificial Intelligence,L-Imsida,Malta |
BookMark | eNqFjkFPAjEQRkeDiaD7DzxMvLNMd2lpj0iWQATkoGfSkHEds3TJtpHw79VEzp6-5L3k5RtAL7SBAR4V5UqRG62rVTV72WhjjMsLKsa5IkNWk72CzE2cLTWVdkKFvoZ-obQd2rFVt5DF-ElEPwnjSt2H57cooca1339IYFyx78IvSC0uwxfHJLVPjNs2cUjiG1wefM34JD6iBNzwKeK0S7JvON7DzbtvImd_ewcP8-p1thgKM--OnRx8d95dfpb_6G9v4kLp |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/MELECON56669.2024.10608508 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350387025 |
EISSN | 2158-8481 |
EndPage | 179 |
ExternalDocumentID | 10608508 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-ieee_primary_106085083 |
IEDL.DBID | RIE |
IngestDate | Mon Nov 04 12:06:04 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106085083 |
ParticipantIDs | ieee_primary_10608508 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-25 |
PublicationDateYYYYMMDD | 2024-06-25 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) |
PublicationTitleAbbrev | MELECON |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001096935 |
Score | 3.8537955 |
Snippet | Media bias refers to the deviation from objective reporting in media, where journalists introduce external beliefs or agendas into the journalistic process,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 174 |
SubjectTerms | Computer Vision keyword extraction Manuals Media Monitoring NER tagging News Analysis Philosophical considerations Pipelines Sentiment analysis Technological innovation Transforms Visualization VLP |
Title | Using Machine Learning to Investigate Potential Image Bias in News Articles |
URI | https://ieeexplore.ieee.org/document/10608508 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTkxQEcSjoBtYExrHeY1QtSqPVAwgdati54IqIEGQLPx6bCchAoHEZluydbLlu7P9fZ8BznI5cUkKbrtShrbyfp4tQubZGfP0M1SY-0auKVkGiwd-vfJXLVndcGGIyIDPyNFF85aflbLWV2VqhwdaYS0awCCM44as1V-oqGQ89vxWWFTVzpPZrf4NUCUsgaakMO50A3z7SsVEkvkOLDsbGgDJk1NXwpEfP-QZ_23kLlg9aQ_vvsLRCLao2IMbAwnAxEAmCVs11UesSuwVNlS_stKoofQZr16Ug8HLTfqOmwK1C8SLFjtnwXg-u58ubG3N-rWRqVh3hnj7MCzKgg4AOedZoE4YLHeJC5WcTNJIMp5HJNJUhuIQrF-HOPqj_Ri29bxq6BTzxzCs3mo6UUG6EqdmcT4BBe-UWg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGWACRBAfBTywJjSO88EIqFVLk4ihSN2i2HFQBU0QJAu_Hp-TEIFAYrMt2TrZ8t3Zfu8Z4DIXI1sKzkxbCN9U3s8xuU8dM6MOPkP5uavlmqLYmz6y-6W7bMnqmgsjpdTgM2lhUb_lZ6Wo8apM7XAPFdaCTdhSiXXgNXSt_kpFpePXjttKi6raVTQO8T9AlbJ4SEqhzOqG-PaZio4lk12IOysaCMmzVVfcEh8_BBr_beYeGD1tjzx8BaR92JDFAcw1KIBEGjQpSaun-kSqkvQaG6pfWSFuKH0hs7VyMeR2lb6TVUHQCZKbFj1nwHAyXtxNTbQmeW2EKpLOEOcQBkVZyCMgjLHMU2cMmtuScZWejNJAUJYHkqep8PkxGL8OcfJH-wVsTxdRmISzeH4KOzjHCKSi7hAG1Vstz1TIrvi5XqhP976XpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+22nd+Mediterranean+Electrotechnical+Conference+%28MELECON%29&rft.atitle=Using+Machine+Learning+to+Investigate+Potential+Image+Bias+in+News+Articles&rft.au=Hili%2C+Gabriel&rft.au=Seychell%2C+Dylan&rft.date=2024-06-25&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=174&rft.epage=179&rft_id=info:doi/10.1109%2FMELECON56669.2024.10608508&rft.externalDocID=10608508 |