Model-Free H/H Predictive Control for Discrete-Time System via Q-Learning
This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed...
Saved in:
Published in | Data Driven Control and Learning Systems Conference (Online) pp. 1532 - 1537 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2767-9861 |
DOI | 10.1109/DDCLS61622.2024.10606907 |
Cover
Loading…
Abstract | This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed algorithm is formulated in the form of linear matrix inequalities, designed to stabilize the system with mixed H_{2}/H_{\infty} control performance. Additionally, to improve robust performance under system disturbance variations, we introduce the receding horizon optimization into the Q-learning based predictive control. Finally, simulation results demonstrate the effectiveness of the proposed approach. |
---|---|
AbstractList | This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed algorithm is formulated in the form of linear matrix inequalities, designed to stabilize the system with mixed H_{2}/H_{\infty} control performance. Additionally, to improve robust performance under system disturbance variations, we introduce the receding horizon optimization into the Q-learning based predictive control. Finally, simulation results demonstrate the effectiveness of the proposed approach. |
Author | Liu, Zhuangyu Wan, Haiying Liu, Fei He, Peng Lin, Yihong Luan, Xiaoli |
Author_xml | – sequence: 1 givenname: Yihong surname: Lin fullname: Lin, Yihong organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 – sequence: 2 givenname: Peng surname: He fullname: He, Peng organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 – sequence: 3 givenname: Haiying surname: Wan fullname: Wan, Haiying organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 – sequence: 4 givenname: Zhuangyu surname: Liu fullname: Liu, Zhuangyu organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 – sequence: 5 givenname: Xiaoli surname: Luan fullname: Luan, Xiaoli email: xlluan@jiangnan.edu.cn organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 – sequence: 6 givenname: Fei surname: Liu fullname: Liu, Fei organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122 |
BookMark | eNqFzrFuwjAQgOFrRaVSyBt0uBdwONtg4zkBBQmkIthRBEflKrErO0Li7cvQzp3-4Vv-NxiFGBgAJZVSkpvVdbU9GGmUKhWpeSnJkHFkn6Bw1i31gvRD7fwZxsoaK9zSyFcocv4iIrWQ2jg9hs0uXrgT68SMzazBj8QXfx78jbGKYUixw2tMWPt8TjywOPqe8XDPA_d48y3uxZbbFHz4nMLLte0yF7-dwPt6dawa4Zn59J1836b76e9S_8M_8FRA8Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DDCLS61622.2024.10606907 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350361674 |
EISSN | 2767-9861 |
EndPage | 1537 |
ExternalDocumentID | 10606907 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-ieee_primary_106069073 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:33:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_106069073 |
ParticipantIDs | ieee_primary_10606907 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-17 |
PublicationDateYYYYMMDD | 2024-05-17 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Data Driven Control and Learning Systems Conference (Online) |
PublicationTitleAbbrev | DDCLS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002513693 |
Score | 3.7454562 |
Snippet | This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1532 |
SubjectTerms | Approximation algorithms Discrete-time systems H2/ H∞ performance index Heuristic algorithms Model-free predictive control Prediction algorithms Predictive models Q-learning Receding horizon optimization Simulation Unknown discrete-time systems |
Title | Model-Free H/H Predictive Control for Discrete-Time System via Q-Learning |
URI | https://ieeexplore.ieee.org/document/10606907 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cnnxSseKPKXnwNV3TtGnz3Fqq6FBU2NtIu5sMZZPR7sG_3ly7ThQF30JIwpGQ3OXuvu8ALr3CmhU6NryU8ZTCjIYbiTG3fyE5M54JwoZL726k8ufgZhyON2D1BguDiE3yGbrUbGL502VZk6vM3nBFxLpRD3r259aCtbYOFauopdKyy9bx9DBNk9tHJZRPgCs_cLvp3wqpNHok24NRJ0GbPvLq1lXhlh8_yBn_LeI-OF-QPXa_VUYHsIOLQ7imSmdvPFshsnyY2wEUlqEHjiVtijqzNitL5_btsMYzJzwIaznM2Xpu2APf0K--ODDIrp6SnJMsk_eWomLSiSGPoL9YLvAY2CzUIi6F72OoA4wKHZcmDISRSqKSQp6A8-sSp3_0n8Eu7SpF0kU0gH61qvHcKuiquGgO5hPGOJGq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50PuiTihN_TM2Dr-mWpk2b59XRaVcUJ-xtpN1NhrLJWH3wrzfXrhNFwbcQwnEk5O5yd98XgOtOZsMKHRqey3BCZUbDjcSQ27eQnJqO8fySS2-QqvjJux35ozVYvcTCIGLZfIYODcta_mSRF5QqszdcEbFusA07Pgmp4FqblIp11VJpWffrdHQ7irrJoxLKJciV6zm1gG9fqZSepLcPaa1D1UDy4hSrzMk_ftAz_lvJA2h-gfbY_cYdHcIWzo-gT3-dvfLeEpHF7dguoMIMmTjWrZrUmY1aWTSz1sOGz5wQIaxiMWfvM8Me-JqA9bkJrd7NsBtz0mX8VpFUjGs15DE05os5ngCb-lqEuXBd9LWHQabD3PieMFJJVFLIU2j-KuLsj_kr2I2Hg2Sc9NO7c9ijHaa6ugha0FgtC7yw7nqVXZaH9AmezpT6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+Driven+Control+and+Learning+Systems+Conference+%28Online%29&rft.atitle=Model-Free+H%2FH+Predictive+Control+for+Discrete-Time+System+via+Q-Learning&rft.au=Lin%2C+Yihong&rft.au=He%2C+Peng&rft.au=Wan%2C+Haiying&rft.au=Liu%2C+Zhuangyu&rft.date=2024-05-17&rft.pub=IEEE&rft.eissn=2767-9861&rft.spage=1532&rft.epage=1537&rft_id=info:doi/10.1109%2FDDCLS61622.2024.10606907&rft.externalDocID=10606907 |