Model-Free H/H Predictive Control for Discrete-Time System via Q-Learning

This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed...

Full description

Saved in:
Bibliographic Details
Published inData Driven Control and Learning Systems Conference (Online) pp. 1532 - 1537
Main Authors Lin, Yihong, He, Peng, Wan, Haiying, Liu, Zhuangyu, Luan, Xiaoli, Liu, Fei
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.05.2024
Subjects
Online AccessGet full text
ISSN2767-9861
DOI10.1109/DDCLS61622.2024.10606907

Cover

Loading…
Abstract This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed algorithm is formulated in the form of linear matrix inequalities, designed to stabilize the system with mixed H_{2}/H_{\infty} control performance. Additionally, to improve robust performance under system disturbance variations, we introduce the receding horizon optimization into the Q-learning based predictive control. Finally, simulation results demonstrate the effectiveness of the proposed approach.
AbstractList This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with the system measured states, a policy iteration solution algorithm is employed to approximate the control inputs. Specifically, the developed algorithm is formulated in the form of linear matrix inequalities, designed to stabilize the system with mixed H_{2}/H_{\infty} control performance. Additionally, to improve robust performance under system disturbance variations, we introduce the receding horizon optimization into the Q-learning based predictive control. Finally, simulation results demonstrate the effectiveness of the proposed approach.
Author Liu, Zhuangyu
Wan, Haiying
Liu, Fei
He, Peng
Lin, Yihong
Luan, Xiaoli
Author_xml – sequence: 1
  givenname: Yihong
  surname: Lin
  fullname: Lin, Yihong
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
– sequence: 2
  givenname: Peng
  surname: He
  fullname: He, Peng
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
– sequence: 3
  givenname: Haiying
  surname: Wan
  fullname: Wan, Haiying
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
– sequence: 4
  givenname: Zhuangyu
  surname: Liu
  fullname: Liu, Zhuangyu
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
– sequence: 5
  givenname: Xiaoli
  surname: Luan
  fullname: Luan, Xiaoli
  email: xlluan@jiangnan.edu.cn
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
– sequence: 6
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  organization: Institute of Automation, Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education,Wuxi,China,214122
BookMark eNqFzrFuwjAQgOFrRaVSyBt0uBdwONtg4zkBBQmkIthRBEflKrErO0Li7cvQzp3-4Vv-NxiFGBgAJZVSkpvVdbU9GGmUKhWpeSnJkHFkn6Bw1i31gvRD7fwZxsoaK9zSyFcocv4iIrWQ2jg9hs0uXrgT68SMzazBj8QXfx78jbGKYUixw2tMWPt8TjywOPqe8XDPA_d48y3uxZbbFHz4nMLLte0yF7-dwPt6dawa4Zn59J1836b76e9S_8M_8FRA8Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DDCLS61622.2024.10606907
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350361674
EISSN 2767-9861
EndPage 1537
ExternalDocumentID 10606907
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-ieee_primary_106069073
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_106069073
ParticipantIDs ieee_primary_10606907
PublicationCentury 2000
PublicationDate 2024-May-17
PublicationDateYYYYMMDD 2024-05-17
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-17
  day: 17
PublicationDecade 2020
PublicationTitle Data Driven Control and Learning Systems Conference (Online)
PublicationTitleAbbrev DDCLS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513693
Score 3.7454562
Snippet This paper presents a model-free H_{2}/H_{\infty} Q-learning predictive control strategy for linear discrete-time systems. To design predictive controller with...
SourceID ieee
SourceType Publisher
StartPage 1532
SubjectTerms Approximation algorithms
Discrete-time systems
H2/ H∞ performance index
Heuristic algorithms
Model-free predictive control
Prediction algorithms
Predictive models
Q-learning
Receding horizon optimization
Simulation
Unknown discrete-time systems
Title Model-Free H/H Predictive Control for Discrete-Time System via Q-Learning
URI https://ieeexplore.ieee.org/document/10606907
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cnnxSseKPKXnwNV3TtGnz3Fqq6FBU2NtIu5sMZZPR7sG_3ly7ThQF30JIwpGQ3OXuvu8ALr3CmhU6NryU8ZTCjIYbiTG3fyE5M54JwoZL726k8ufgZhyON2D1BguDiE3yGbrUbGL502VZk6vM3nBFxLpRD3r259aCtbYOFauopdKyy9bx9DBNk9tHJZRPgCs_cLvp3wqpNHok24NRJ0GbPvLq1lXhlh8_yBn_LeI-OF-QPXa_VUYHsIOLQ7imSmdvPFshsnyY2wEUlqEHjiVtijqzNitL5_btsMYzJzwIaznM2Xpu2APf0K--ODDIrp6SnJMsk_eWomLSiSGPoL9YLvAY2CzUIi6F72OoA4wKHZcmDISRSqKSQp6A8-sSp3_0n8Eu7SpF0kU0gH61qvHcKuiquGgO5hPGOJGq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50PuiTihN_TM2Dr-mWpk2b59XRaVcUJ-xtpN1NhrLJWH3wrzfXrhNFwbcQwnEk5O5yd98XgOtOZsMKHRqey3BCZUbDjcSQ27eQnJqO8fySS2-QqvjJux35ozVYvcTCIGLZfIYODcta_mSRF5QqszdcEbFusA07Pgmp4FqblIp11VJpWffrdHQ7irrJoxLKJciV6zm1gG9fqZSepLcPaa1D1UDy4hSrzMk_ftAz_lvJA2h-gfbY_cYdHcIWzo-gT3-dvfLeEpHF7dguoMIMmTjWrZrUmY1aWTSz1sOGz5wQIaxiMWfvM8Me-JqA9bkJrd7NsBtz0mX8VpFUjGs15DE05os5ngCb-lqEuXBd9LWHQabD3PieMFJJVFLIU2j-KuLsj_kr2I2Hg2Sc9NO7c9ijHaa6ugha0FgtC7yw7nqVXZaH9AmezpT6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+Driven+Control+and+Learning+Systems+Conference+%28Online%29&rft.atitle=Model-Free+H%2FH+Predictive+Control+for+Discrete-Time+System+via+Q-Learning&rft.au=Lin%2C+Yihong&rft.au=He%2C+Peng&rft.au=Wan%2C+Haiying&rft.au=Liu%2C+Zhuangyu&rft.date=2024-05-17&rft.pub=IEEE&rft.eissn=2767-9861&rft.spage=1532&rft.epage=1537&rft_id=info:doi/10.1109%2FDDCLS61622.2024.10606907&rft.externalDocID=10606907