Formally Verified Interval Arithmetic and Its Application to Program Verification
Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need...
Saved in:
Published in | 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE) pp. 111 - 121 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
14.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need to ensure that computations stay within certain bounds is common. For example, to show that arithmetic computations stay within the hardware bounds of a given number representation.We present a formalisation of (extended) interval arithmetic in Isabelle/HOL, including the concept of inclusion isotone (extended) interval analysis. The main result of this part is the formal proof that interval-splitting converges for Lipschitz-continuous interval isotone functions. We also show how interval types can be used for verifying programs in a C-like programming language.CCS CONCEPTS* Theory of computation → Semantics and reasoning; Interactive proof systems; * Software and its engineering → Software notations and tools; * Mathematics of computing → Mathematical analysis; * Computing methodologies → Symbolic and algebraic manipulation. |
---|---|
AbstractList | Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need to ensure that computations stay within certain bounds is common. For example, to show that arithmetic computations stay within the hardware bounds of a given number representation.We present a formalisation of (extended) interval arithmetic in Isabelle/HOL, including the concept of inclusion isotone (extended) interval analysis. The main result of this part is the formal proof that interval-splitting converges for Lipschitz-continuous interval isotone functions. We also show how interval types can be used for verifying programs in a C-like programming language.CCS CONCEPTS* Theory of computation → Semantics and reasoning; Interactive proof systems; * Software and its engineering → Software notations and tools; * Mathematics of computing → Mathematical analysis; * Computing methodologies → Symbolic and algebraic manipulation. |
Author | Cameron-Burke, Teddy Stell, Amy Brucker, Achim D. |
Author_xml | – sequence: 1 givenname: Achim D. surname: Brucker fullname: Brucker, Achim D. email: a.brucker@exeter.ac.uk organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK – sequence: 2 givenname: Teddy surname: Cameron-Burke fullname: Cameron-Burke, Teddy email: tc599@exeter.ac.uk organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK – sequence: 3 givenname: Amy surname: Stell fullname: Stell, Amy email: a.stell@exeter.ac.uk organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK |
BookMark | eNqFjcsKwjAUBaMo-OofuMgPFG5bY5tlEYvuFMRtCfVWI3mUJAj9ewt272pghsNZkZmxBick4jkvdgA5sIKnU7JMWc5iBpwvSOT9GwCyhAMwtiTXyjotlOrpHZ1sJT7o2QR0H6Fo6WR4aQyyocIMPnhadp2SjQjSGhosvTj7dEKP25_fkHkrlMdo5Jpsq-PtcIolItadk1q4vk6Gd7bPiuxP_gK-uj6C |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK ESBDL RIE RIL |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798400705892 |
EISSN | 2575-5099 |
EndPage | 121 |
ExternalDocumentID | 10555638 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: 10.13039/501100000266 |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO ESBDL IEGSK OCL RIE RIL |
ID | FETCH-ieee_primary_105556383 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 03 05:40:23 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_105556383 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10555638 |
ParticipantIDs | ieee_primary_10555638 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE) |
PublicationTitleAbbrev | FORMALISE |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssj0003190055 |
Score | 3.843275 |
Snippet | Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 111 |
SubjectTerms | Cognition Extended Interval Analysis Formalising Mathematics Hardware Isabelle/HOL Mathematical analysis Measurement errors Program Verification Programming Semantics Software |
Title | Formally Verified Interval Arithmetic and Its Application to Program Verification |
URI | https://ieeexplore.ieee.org/document/10555638 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT57qI-Kjyh68JtpsXnsspaEIFgWV3kqz2UWxJtJuDvrrndkkLYqCt2VgH7CzfLMz880AXHIZSa18_J0EMnQDkVy7icYLGaAlFyPARKEmvvPtNJo8BjezcNaQ1S0XRillk8-UR0Mby89LWZGr7IqaOYaoMB3oxELUZK2NQwV1iQpKfeuSYkEi7cG0Xb7ODXn1KpN58vNH5cV_778HzpaPx-42SLMPO6o4gF7bkIE17_MQ7lOyQJfLD_aEiqXRumTW44faxIarF_P8RpRFtihQbtZsuA1eM1PSDpSq1cyt5Q700_HDaOLSMefvdWmKeXtCfgTdoizUMTD8QYjYzxWnZre5zoTSnGut0TQIeLxITsD5dYnTP-RnsOsjsFNEZRD0oWtWlTpHYDbZhb2QL1m4lbM |
link.rule.ids | 310,311,783,787,792,793,799,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvRUHxEfVffgNdFm8zwWMURtg0KV3kKT7KK0JlI3B_31zuTRoih4WwY2O7ATvtmZ-WYAznnqpFKY-DqxUlu3fO9S9yReSB89ORcBxrEl8Z1HkRM-WrcTe9KQ1SsujBCiKj4TBi2rXH5WpCWFyi5omKONBrMOGzY5FjVdaxlSQWuillLf5qRUMBF0IWoPqKtDZkapEiP9_NF78d8abIO2YuSx-yXW7MCayHeh245kYM0fugcPAfmg8_kHe0LTkuhfsirmh_bEBosX9fxKpEU2zVGu3tlglb5mqqATqFir2VvLNegF1-OrUCc147e6OUXcasj3oZMXuTgAhm8I3zUzwWncbSYTX0jOpZToHFjcnXqHoP36iaM_5GewGY5Hw3h4E90dw5aJME_5lb7Vg45alOIEYVolp9XlfAFaOJkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+12th+International+Conference+on+Formal+Methods+in+Software+Engineering+%28FormaliSE%29&rft.atitle=Formally+Verified+Interval+Arithmetic+and+Its+Application+to+Program+Verification&rft.au=Brucker%2C+Achim+D.&rft.au=Cameron-Burke%2C+Teddy&rft.au=Stell%2C+Amy&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2575-5099&rft.spage=111&rft.epage=121&rft.externalDocID=10555638 |