Formally Verified Interval Arithmetic and Its Application to Program Verification

Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE) pp. 111 - 121
Main Authors Brucker, Achim D., Cameron-Burke, Teddy, Stell, Amy
Format Conference Proceeding
LanguageEnglish
Published ACM 14.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need to ensure that computations stay within certain bounds is common. For example, to show that arithmetic computations stay within the hardware bounds of a given number representation.We present a formalisation of (extended) interval arithmetic in Isabelle/HOL, including the concept of inclusion isotone (extended) interval analysis. The main result of this part is the formal proof that interval-splitting converges for Lipschitz-continuous interval isotone functions. We also show how interval types can be used for verifying programs in a C-like programming language.CCS CONCEPTS* Theory of computation → Semantics and reasoning; Interactive proof systems; * Software and its engineering → Software notations and tools; * Mathematics of computing → Mathematical analysis; * Computing methodologies → Symbolic and algebraic manipulation.
AbstractList Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval analysis into program verification environments. Such an integration is not only useful for the verification of numerical algorithms: the need to ensure that computations stay within certain bounds is common. For example, to show that arithmetic computations stay within the hardware bounds of a given number representation.We present a formalisation of (extended) interval arithmetic in Isabelle/HOL, including the concept of inclusion isotone (extended) interval analysis. The main result of this part is the formal proof that interval-splitting converges for Lipschitz-continuous interval isotone functions. We also show how interval types can be used for verifying programs in a C-like programming language.CCS CONCEPTS* Theory of computation → Semantics and reasoning; Interactive proof systems; * Software and its engineering → Software notations and tools; * Mathematics of computing → Mathematical analysis; * Computing methodologies → Symbolic and algebraic manipulation.
Author Cameron-Burke, Teddy
Stell, Amy
Brucker, Achim D.
Author_xml – sequence: 1
  givenname: Achim D.
  surname: Brucker
  fullname: Brucker, Achim D.
  email: a.brucker@exeter.ac.uk
  organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK
– sequence: 2
  givenname: Teddy
  surname: Cameron-Burke
  fullname: Cameron-Burke, Teddy
  email: tc599@exeter.ac.uk
  organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK
– sequence: 3
  givenname: Amy
  surname: Stell
  fullname: Stell, Amy
  email: a.stell@exeter.ac.uk
  organization: The University of Exeter,Department of Computer Science,Exeter, Devon,UK
BookMark eNqFjcsKwjAUBaMo-OofuMgPFG5bY5tlEYvuFMRtCfVWI3mUJAj9ewt272pghsNZkZmxBick4jkvdgA5sIKnU7JMWc5iBpwvSOT9GwCyhAMwtiTXyjotlOrpHZ1sJT7o2QR0H6Fo6WR4aQyyocIMPnhadp2SjQjSGhosvTj7dEKP25_fkHkrlMdo5Jpsq-PtcIolItadk1q4vk6Gd7bPiuxP_gK-uj6C
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400705892
EISSN 2575-5099
EndPage 121
ExternalDocumentID 10555638
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: 10.13039/501100000266
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
OCL
RIE
RIL
ID FETCH-ieee_primary_105556383
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:23 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_105556383
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10555638
ParticipantIDs ieee_primary_10555638
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering (FormaliSE)
PublicationTitleAbbrev FORMALISE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0003190055
Score 3.843275
Snippet Interval arithmetic is a well known mathematical technique to analyse or mitigate rounding or measurement errors. Thus, it is promising to integrate interval...
SourceID ieee
SourceType Publisher
StartPage 111
SubjectTerms Cognition
Extended Interval Analysis
Formalising Mathematics
Hardware
Isabelle/HOL
Mathematical analysis
Measurement errors
Program Verification
Programming
Semantics
Software
Title Formally Verified Interval Arithmetic and Its Application to Program Verification
URI https://ieeexplore.ieee.org/document/10555638
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT57qI-Kjyh68JtpsXnsspaEIFgWV3kqz2UWxJtJuDvrrndkkLYqCt2VgH7CzfLMz880AXHIZSa18_J0EMnQDkVy7icYLGaAlFyPARKEmvvPtNJo8BjezcNaQ1S0XRillk8-UR0Mby89LWZGr7IqaOYaoMB3oxELUZK2NQwV1iQpKfeuSYkEi7cG0Xb7ODXn1KpN58vNH5cV_778HzpaPx-42SLMPO6o4gF7bkIE17_MQ7lOyQJfLD_aEiqXRumTW44faxIarF_P8RpRFtihQbtZsuA1eM1PSDpSq1cyt5Q700_HDaOLSMefvdWmKeXtCfgTdoizUMTD8QYjYzxWnZre5zoTSnGut0TQIeLxITsD5dYnTP-RnsOsjsFNEZRD0oWtWlTpHYDbZhb2QL1m4lbM
link.rule.ids 310,311,783,787,792,793,799,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvRUHxEfVffgNdFm8zwWMURtg0KV3kKT7KK0JlI3B_31zuTRoih4WwY2O7ATvtmZ-WYAznnqpFKY-DqxUlu3fO9S9yReSB89ORcBxrEl8Z1HkRM-WrcTe9KQ1SsujBCiKj4TBi2rXH5WpCWFyi5omKONBrMOGzY5FjVdaxlSQWuillLf5qRUMBF0IWoPqKtDZkapEiP9_NF78d8abIO2YuSx-yXW7MCayHeh245kYM0fugcPAfmg8_kHe0LTkuhfsirmh_bEBosX9fxKpEU2zVGu3tlglb5mqqATqFir2VvLNegF1-OrUCc147e6OUXcasj3oZMXuTgAhm8I3zUzwWncbSYTX0jOpZToHFjcnXqHoP36iaM_5GewGY5Hw3h4E90dw5aJME_5lb7Vg45alOIEYVolp9XlfAFaOJkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+12th+International+Conference+on+Formal+Methods+in+Software+Engineering+%28FormaliSE%29&rft.atitle=Formally+Verified+Interval+Arithmetic+and+Its+Application+to+Program+Verification&rft.au=Brucker%2C+Achim+D.&rft.au=Cameron-Burke%2C+Teddy&rft.au=Stell%2C+Amy&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2575-5099&rft.spage=111&rft.epage=121&rft.externalDocID=10555638