MAGAN: Multi-Attention Generative Adversarial Network for Infrared and Visible Image Fusion

Deep learning has been widely used in infrared and visible image fusion owing to its strong feature extraction and generalization capabilities. However, it is difficult to directly extract specific image features from different modal images. Therefore, according to the characteristics of infrared an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement p. 1
Main Authors Huang, Shuying, Song, Zixiang, Yang, Yong, Wan, Weiguo, Kong, Xiangkai
Format Journal Article
LanguageEnglish
Published IEEE 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning has been widely used in infrared and visible image fusion owing to its strong feature extraction and generalization capabilities. However, it is difficult to directly extract specific image features from different modal images. Therefore, according to the characteristics of infrared and visible images, this paper proposes a multi-attention generative adversarial network (MAGAN) for infrared and visible image fusion, which is composed of a multi- attention generator and two multi-attention discriminators. The multi-attention generator gradually realizes the extraction and fusion of image features by constructing two modules: a triple-path feature pre-fusion module (TFPM) and a feature emphasis fusion module (FEFM). The two multi-attention discriminators are constructed to ensure that the fused images retain the salient targets and the texture information from the source images. In MAGAN, an intensity attention and a texture attention are designed to extract the specific features of the source images to retain more intensity and texture information in the fused image. In addition, a saliency target intensity loss is defined to ensure that the fused images obtain more accurate salient information from infrared images. Experimental results on two public datasets show that the proposed MAGAN outperforms some state-of-the-art models in terms of visual effects and quantitative metrics.
AbstractList Deep learning has been widely used in infrared and visible image fusion owing to its strong feature extraction and generalization capabilities. However, it is difficult to directly extract specific image features from different modal images. Therefore, according to the characteristics of infrared and visible images, this paper proposes a multi-attention generative adversarial network (MAGAN) for infrared and visible image fusion, which is composed of a multi- attention generator and two multi-attention discriminators. The multi-attention generator gradually realizes the extraction and fusion of image features by constructing two modules: a triple-path feature pre-fusion module (TFPM) and a feature emphasis fusion module (FEFM). The two multi-attention discriminators are constructed to ensure that the fused images retain the salient targets and the texture information from the source images. In MAGAN, an intensity attention and a texture attention are designed to extract the specific features of the source images to retain more intensity and texture information in the fused image. In addition, a saliency target intensity loss is defined to ensure that the fused images obtain more accurate salient information from infrared images. Experimental results on two public datasets show that the proposed MAGAN outperforms some state-of-the-art models in terms of visual effects and quantitative metrics.
Author Kong, Xiangkai
Song, Zixiang
Huang, Shuying
Wan, Weiguo
Yang, Yong
Author_xml – sequence: 1
  givenname: Shuying
  orcidid: 0000-0003-2771-8461
  surname: Huang
  fullname: Huang, Shuying
  organization: School of Software, Tiangong University, Tianjin, China
– sequence: 2
  givenname: Zixiang
  orcidid: 0000-0002-2593-4147
  surname: Song
  fullname: Song, Zixiang
  organization: School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
– sequence: 3
  givenname: Yong
  orcidid: 0000-0001-9467-0942
  surname: Yang
  fullname: Yang, Yong
  organization: School of Computer Science and Technology, Tiangong University, Tianjin, China
– sequence: 4
  givenname: Weiguo
  orcidid: 0000-0002-3537-979X
  surname: Wan
  fullname: Wan, Weiguo
  organization: School of Software and Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang, China
– sequence: 5
  givenname: Xiangkai
  orcidid: 0000-0002-5643-3425
  surname: Kong
  fullname: Kong, Xiangkai
  organization: School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
BookMark eNqFzLFuwjAQgGEPqUTSsnfocC-QcLZTQtiiqtAMYUJdGJBRLpXb4KCzk6pvDwN7p3_4pD8RkRscCfEsMZMSy8W-bjKFSmdarZRGjESMKFdpmb8uZyLx_hsRi2VexOLQVNtqt4Zm7INNqxDIBTs42JIjNsFOBFU7EXvD1vSwo_A78A90A0PtOjZMLRjXwqf19tQT1GfzRbAZ_W3yJB4603ua3_soXjbv-7eP1BLR8cL2bPjvKFHmWhW5_oevenhCyw
CODEN IEIMAO
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/TIM.2023.3282300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 1
ExternalDocumentID 10143274
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072218; 62201025
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACIWK
ACNCT
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
ID FETCH-ieee_primary_101432743
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Nov 04 12:05:19 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_101432743
ORCID 0000-0003-2771-8461
0000-0002-5643-3425
0000-0002-3537-979X
0000-0002-2593-4147
0000-0001-9467-0942
ParticipantIDs ieee_primary_10143274
PublicationCentury 2000
PublicationDate 20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230601
  day: 1
PublicationDecade 2020
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0007647
Score 4.8485713
Snippet Deep learning has been widely used in infrared and visible image fusion owing to its strong feature extraction and generalization capabilities. However, it is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Electronic mail
Feature extraction
Fuses
Generative adversarial networks
Generators
Image fusion
intensity attention
multi-attention GAN
texture attention
Training
Title MAGAN: Multi-Attention Generative Adversarial Network for Infrared and Visible Image Fusion
URI https://ieeexplore.ieee.org/document/10143274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sQdCDj1rxUWUPXjdNdpM26y2ItRGaU5WCh7Kb3YBoU2mTi7_efTSiouAt7CF87GN2ZuebbwCuqNTwYsIxkxHHIZMF5pTkONbxEKecxLm0BNlsMH4I72fRbFOsbmthlFKWfKY882lz-XKZ1-aprG_6ylIdRrWgNWTMFWt9mt3hIHQCmYE-wdotaHKSPutP04ln2oR7lJi8kv-tk4q9SEb7kDUQHH_kxasr4eXvP9QZ_43xAPY2LiVK3B44hC1VdmD3i9BgB7Yt0TNfH8HTJLlLsmtkC29xUlWO7oic_LSxfcj2aF5zszNR5ljiSLu2KC2LlaGrI15K9Pisz9KrQulCGyQ0qs2jWxd6o9vpzRgbvPM3p2Mxb6DSY2iXy1KdAAq4IEp7dFEhdGDiFzwmIi9CLnggWSzCU-j--ouzP8bPYcdMvONW9aBdrWp1oW_xSlza1fsA8zefKQ
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RdSDj3XFx6o5eG23b1tvRaytbnuqsuChJE0Ki9qV3fbirzePragoeAs5hIEkk28y33wDcGFTbp5vYS2gLtacgFYatq1S83k8hG1s-SWVBNnMix-cu4k7WRary1oYxpgknzFdDGUun87KVnyVjURfWZuHUauwxoG176lyrU_He-k5SiLT5HeYA4MuK2kEozxJddEoXLctkVkyvvVSkU9JtANZZ4RikDzrbUP08v2HPuO_rdyF7SWoRKE6BXuwwuo-bH2RGuzDuqR6lot9eErD2zC7QrL0VgubRhEekRKgFt4PyS7NCyzOJsoUTxxxcIuSupoLwjrCNUWPU36bXhhKXrlLQlErvt0GMIxu8utYE_YWb0rJouhMtQ-gV89qdgjIxMRiHNO5FeGhiVFh3yJl5WCCTRr4xDmCwa9LHP8xfw4bcZ6Oi3GS3Z_AptgExbQaQq-Zt-yUv-kNOZM7-QF1iaJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAGAN%3A+Multi-Attention+Generative+Adversarial+Network+for+Infrared+and+Visible+Image+Fusion&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Huang%2C+Shuying&rft.au=Song%2C+Zixiang&rft.au=Yang%2C+Yong&rft.au=Wan%2C+Weiguo&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3282300&rft.externalDocID=10143274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon