LungRUNET: a Segmentation Framework for Lung Nodules
In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis o...
Saved in:
Published in | International Conference on Advanced Computing and Communication Systems (Online) Vol. 1; pp. 658 - 661 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2575-7288 |
DOI | 10.1109/ICACCS57279.2023.10113093 |
Cover
Abstract | In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis of Computed Tomography images of lung thoracic regions. The present study suggests a new model namely Lung Residual UNet (Lung_RUNET) based on UNet architecture for the effective segmentation of lung nodules. The proposed model was checked on the publicly available LIDC-IDRI dataset. The results were compared with the UNet model and have shown significant improvement in segmentation with 87.2% in DSC, 81.1% in sensitivity and 89.1% in precision. |
---|---|
AbstractList | In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis of Computed Tomography images of lung thoracic regions. The present study suggests a new model namely Lung Residual UNet (Lung_RUNET) based on UNet architecture for the effective segmentation of lung nodules. The proposed model was checked on the publicly available LIDC-IDRI dataset. The results were compared with the UNet model and have shown significant improvement in segmentation with 87.2% in DSC, 81.1% in sensitivity and 89.1% in precision. |
Author | Govindaraj, V. Dhanasekar, S. Bruntha, P. Malin Ahmed, L. Jubair Pandian, S. Immanuel Alex Abraham, Siril Sam |
Author_xml | – sequence: 1 givenname: P. Malin surname: Bruntha fullname: Bruntha, P. Malin email: malin.bruntha@gmail.com organization: Karunya Institute of Technology and Sciences,Department of ECE,Coimbatore,India – sequence: 2 givenname: S. surname: Dhanasekar fullname: Dhanasekar, S. email: dhanasekar.sm@gmail.com organization: Sri Eshwar College of Engineering,Department of ECE,Coimbatore,India – sequence: 3 givenname: L. Jubair surname: Ahmed fullname: Ahmed, L. Jubair email: jubaircbe@gmail.com organization: Akshaya College of Engineering and Technology,Department of ECE,Coimbatore,India – sequence: 4 givenname: V. surname: Govindaraj fullname: Govindaraj, V. email: see1govind@gmail.com organization: Dr. N.G.P Institute of Technology,Department of ECE,Coimbatore,India – sequence: 5 givenname: S. Immanuel Alex surname: Pandian fullname: Pandian, S. Immanuel Alex email: immans@karunya.edu organization: Karunya Institute of Technology and Sciences,Department of ECE,Coimbatore,India – sequence: 6 givenname: Siril Sam surname: Abraham fullname: Abraham, Siril Sam email: abrahamcyril77@gmail.com organization: Globant India Pvt. Ltd.,Department of Data Science,Pune,India |
BookMark | eNqFjssOATEUQC8h8Zo_sKgPMG5bo62dTAiJWDDWkyYuGUwrHSL-XiSsrc7inMXpQMN5RwADjjHnaEardJamu0QJZWKBQsYcOZdoZA0io4yWCUqjpJrUoS0SlQyV0LoFUVWdEVFybbTWbRivH-603W_m2ZRZtqNTSe5u74V3bBFsSU8fLuzoA_t0bOMPjytVPWge7bWi6Msu9BfzLF0OCyLKb6EobXjlvyH5R78Bx7U59A |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICACCS57279.2023.10113093 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798350397376 |
EISSN | 2575-7288 |
EndPage | 661 |
ExternalDocumentID | 10113093 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-ieee_primary_101130933 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:20:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-ieee_primary_101130933 |
ParticipantIDs | ieee_primary_10113093 |
PublicationCentury | 2000 |
PublicationDate | 2023-March-17 |
PublicationDateYYYYMMDD | 2023-03-17 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-March-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Advanced Computing and Communication Systems (Online) |
PublicationTitleAbbrev | ICACCS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003189888 |
Score | 3.6547155 |
Snippet | In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 658 |
SubjectTerms | Communication systems Computational modeling Computed tomography Image analysis Image segmentation Lung Lung Cancer Lung Nodule Nodule Segmentation Pulmonary Nodule Sensitivity UNet |
Title | LungRUNET: a Segmentation Framework for Lung Nodules |
URI | https://ieeexplore.ieee.org/document/10113093 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7cPYin9VHxsUoEr62kbdqtNylbVtEi7i7sbclrPaitaHvx1ztJ2xVFwVsISRiSTOaR-WYAzlXkK5_5CdomFA0UOZIuFypxYxngW6g4XdliE3d5NJmHNwu2aMHqFgujtbbBZ9ozTfuXr0pZG1cZcjil5ueuBz28Zw1Ya-1QwcuZoDm3CWdtHs2L6_QqTacMJbRBpPiB183_VknFCpJsAHlHQhM_8uTVlfDkx4_sjP-mcRucL8weuV9Lox3Y0MUuDLqiDaTl4T0Ib5G9H-b5eHZJOJnqx5cWfVSQrAvUIqjJEjOO5KWqn_W7A8NsPEsnrqFk-dpkqFh2RAT70C_KQh8A4YKrGLVDySQLFROjQK-iSFCqKTdp6w7B-XWJoz_6j2HL7KkJx6LxEPrVW61PUD5X4tSeyydDXJGY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50BfW0Pio-Vo3gtZW0TXfrTcqWrnaLuF3YW8lrPaitaHvx15v0saIoeAshDEOSyZdJ5psBuBSeLWxi-8o3wcpB4SNuUiZ8c8gddRYKipd1sYlp4kVz93ZBFi1ZvebCSCnr4DNp6Wb9ly8KXumnMmXhGOufu3XYUMDvkoautXpSUdvTVw7dJly0mTSvJsFNEMyIwmjNSbEdq5PwrZZKDSVhH5JOiSaC5MmqSmbxjx_5Gf-t5Q4YX6w9dL_Co11Yk_ke9LuyDai14n1wY2XgD_NknF4jimby8aXlH-Uo7EK1kLrLIj0OJYWonuW7AYNwnAaRqTXJXpscFVmnhHMAvbzI5SEgyqgYqvshJ5y4grCRI5eexzCWmOrEdUdg_Cri-I_-c9iK0mmcxZPk7gS29fzq4Cw8HECvfKvkqULrkp3Va_QJFgWU5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Computing+and+Communication+Systems+%28Online%29&rft.atitle=LungRUNET%3A+a+Segmentation+Framework+for+Lung+Nodules&rft.au=Bruntha%2C+P.+Malin&rft.au=Dhanasekar%2C+S.&rft.au=Ahmed%2C+L.+Jubair&rft.au=Govindaraj%2C+V.&rft.date=2023-03-17&rft.pub=IEEE&rft.eissn=2575-7288&rft.volume=1&rft.spage=658&rft.epage=661&rft_id=info:doi/10.1109%2FICACCS57279.2023.10113093&rft.externalDocID=10113093 |