LungRUNET: a Segmentation Framework for Lung Nodules

In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis o...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Computing and Communication Systems (Online) Vol. 1; pp. 658 - 661
Main Authors Bruntha, P. Malin, Dhanasekar, S., Ahmed, L. Jubair, Govindaraj, V., Pandian, S. Immanuel Alex, Abraham, Siril Sam
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.03.2023
Subjects
Online AccessGet full text
ISSN2575-7288
DOI10.1109/ICACCS57279.2023.10113093

Cover

Abstract In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis of Computed Tomography images of lung thoracic regions. The present study suggests a new model namely Lung Residual UNet (Lung_RUNET) based on UNet architecture for the effective segmentation of lung nodules. The proposed model was checked on the publicly available LIDC-IDRI dataset. The results were compared with the UNet model and have shown significant improvement in segmentation with 87.2% in DSC, 81.1% in sensitivity and 89.1% in precision.
AbstractList In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early, however, the mortality rates due to lung cancer can be brought down drastically. Lung nodule segmentation is now possible using image analysis of Computed Tomography images of lung thoracic regions. The present study suggests a new model namely Lung Residual UNet (Lung_RUNET) based on UNet architecture for the effective segmentation of lung nodules. The proposed model was checked on the publicly available LIDC-IDRI dataset. The results were compared with the UNet model and have shown significant improvement in segmentation with 87.2% in DSC, 81.1% in sensitivity and 89.1% in precision.
Author Govindaraj, V.
Dhanasekar, S.
Bruntha, P. Malin
Ahmed, L. Jubair
Pandian, S. Immanuel Alex
Abraham, Siril Sam
Author_xml – sequence: 1
  givenname: P. Malin
  surname: Bruntha
  fullname: Bruntha, P. Malin
  email: malin.bruntha@gmail.com
  organization: Karunya Institute of Technology and Sciences,Department of ECE,Coimbatore,India
– sequence: 2
  givenname: S.
  surname: Dhanasekar
  fullname: Dhanasekar, S.
  email: dhanasekar.sm@gmail.com
  organization: Sri Eshwar College of Engineering,Department of ECE,Coimbatore,India
– sequence: 3
  givenname: L. Jubair
  surname: Ahmed
  fullname: Ahmed, L. Jubair
  email: jubaircbe@gmail.com
  organization: Akshaya College of Engineering and Technology,Department of ECE,Coimbatore,India
– sequence: 4
  givenname: V.
  surname: Govindaraj
  fullname: Govindaraj, V.
  email: see1govind@gmail.com
  organization: Dr. N.G.P Institute of Technology,Department of ECE,Coimbatore,India
– sequence: 5
  givenname: S. Immanuel Alex
  surname: Pandian
  fullname: Pandian, S. Immanuel Alex
  email: immans@karunya.edu
  organization: Karunya Institute of Technology and Sciences,Department of ECE,Coimbatore,India
– sequence: 6
  givenname: Siril Sam
  surname: Abraham
  fullname: Abraham, Siril Sam
  email: abrahamcyril77@gmail.com
  organization: Globant India Pvt. Ltd.,Department of Data Science,Pune,India
BookMark eNqFjssOATEUQC8h8Zo_sKgPMG5bo62dTAiJWDDWkyYuGUwrHSL-XiSsrc7inMXpQMN5RwADjjHnaEardJamu0QJZWKBQsYcOZdoZA0io4yWCUqjpJrUoS0SlQyV0LoFUVWdEVFybbTWbRivH-603W_m2ZRZtqNTSe5u74V3bBFsSU8fLuzoA_t0bOMPjytVPWge7bWi6Msu9BfzLF0OCyLKb6EobXjlvyH5R78Bx7U59A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACCS57279.2023.10113093
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350397376
EISSN 2575-7288
EndPage 661
ExternalDocumentID 10113093
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-ieee_primary_101130933
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-ieee_primary_101130933
ParticipantIDs ieee_primary_10113093
PublicationCentury 2000
PublicationDate 2023-March-17
PublicationDateYYYYMMDD 2023-03-17
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Advanced Computing and Communication Systems (Online)
PublicationTitleAbbrev ICACCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189888
Score 3.6547155
Snippet In the modern-day world, deaths due to cancer are on the increase alarmingly. Among various types of cancer, lung cancer is very deadly. If detected early,...
SourceID ieee
SourceType Publisher
StartPage 658
SubjectTerms Communication systems
Computational modeling
Computed tomography
Image analysis
Image segmentation
Lung
Lung Cancer
Lung Nodule
Nodule Segmentation
Pulmonary Nodule
Sensitivity
UNet
Title LungRUNET: a Segmentation Framework for Lung Nodules
URI https://ieeexplore.ieee.org/document/10113093
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7cPYin9VHxsUoEr62kbdqtNylbVtEi7i7sbclrPaitaHvx1ztJ2xVFwVsISRiSTOaR-WYAzlXkK5_5CdomFA0UOZIuFypxYxngW6g4XdliE3d5NJmHNwu2aMHqFgujtbbBZ9ozTfuXr0pZG1cZcjil5ueuBz28Zw1Ya-1QwcuZoDm3CWdtHs2L6_QqTacMJbRBpPiB183_VknFCpJsAHlHQhM_8uTVlfDkx4_sjP-mcRucL8weuV9Lox3Y0MUuDLqiDaTl4T0Ib5G9H-b5eHZJOJnqx5cWfVSQrAvUIqjJEjOO5KWqn_W7A8NsPEsnrqFk-dpkqFh2RAT70C_KQh8A4YKrGLVDySQLFROjQK-iSFCqKTdp6w7B-XWJoz_6j2HL7KkJx6LxEPrVW61PUD5X4tSeyydDXJGY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50BfW0Pio-Vo3gtZW0TXfrTcqWrnaLuF3YW8lrPaitaHvx15v0saIoeAshDEOSyZdJ5psBuBSeLWxi-8o3wcpB4SNuUiZ8c8gddRYKipd1sYlp4kVz93ZBFi1ZvebCSCnr4DNp6Wb9ly8KXumnMmXhGOufu3XYUMDvkoautXpSUdvTVw7dJly0mTSvJsFNEMyIwmjNSbEdq5PwrZZKDSVhH5JOiSaC5MmqSmbxjx_5Gf-t5Q4YX6w9dL_Co11Yk_ke9LuyDai14n1wY2XgD_NknF4jimby8aXlH-Uo7EK1kLrLIj0OJYWonuW7AYNwnAaRqTXJXpscFVmnhHMAvbzI5SEgyqgYqvshJ5y4grCRI5eexzCWmOrEdUdg_Cri-I_-c9iK0mmcxZPk7gS29fzq4Cw8HECvfKvkqULrkp3Va_QJFgWU5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Computing+and+Communication+Systems+%28Online%29&rft.atitle=LungRUNET%3A+a+Segmentation+Framework+for+Lung+Nodules&rft.au=Bruntha%2C+P.+Malin&rft.au=Dhanasekar%2C+S.&rft.au=Ahmed%2C+L.+Jubair&rft.au=Govindaraj%2C+V.&rft.date=2023-03-17&rft.pub=IEEE&rft.eissn=2575-7288&rft.volume=1&rft.spage=658&rft.epage=661&rft_id=info:doi/10.1109%2FICACCS57279.2023.10113093&rft.externalDocID=10113093