An Efficient Statistical Model Based Classification Algorithm for Classifying Cancer Gene Expression Data with Minimal Gene Subsets

Data mining algorithms are extensively used to classify gene expression data, in which prediction of disease plays a vital role. This paper aims to develop a new classification algorithm for cancer gene expression data using minimal number of gene combinations i.e. minimum gene subsets. The model us...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Cyber Society and Education Vol. 2; no. 2; pp. 051 - 066
Main Authors Mallika Rangasamy, Saravanan Venketraman
Format Journal Article
LanguageChinese
Published 台灣 Academy of Taiwan Information Systems Research 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data mining algorithms are extensively used to classify gene expression data, in which prediction of disease plays a vital role. This paper aims to develop a new classification algorithm for cancer gene expression data using minimal number of gene combinations i.e. minimum gene subsets. The model uses classical statistical technique for gene ranking and two different classifiers for gene selection and prediction. The proposed method proves the capability of producing very high accuracy with very minimum number of genes. The methodology was tried with three publicly available cancer databases and the results were compared with the earlier approaches and proven better and promising prediction strength with less computational burden. This paper also focuses on the importance of applying an efficient gene selection method prior to classification can lead to good performance and the results are proven to be the best.
AbstractList Data mining algorithms are extensively used to classify gene expression data, in which prediction of disease plays a vital role. This paper aims to develop a new classification algorithm for cancer gene expression data using minimal number of gene combinations i.e. minimum gene subsets. The model uses classical statistical technique for gene ranking and two different classifiers for gene selection and prediction. The proposed method proves the capability of producing very high accuracy with very minimum number of genes. The methodology was tried with three publicly available cancer databases and the results were compared with the earlier approaches and proven better and promising prediction strength with less computational burden. This paper also focuses on the importance of applying an efficient gene selection method prior to classification can lead to good performance and the results are proven to be the best.
Author Saravanan Venketraman
Mallika Rangasamy
Author_xml – sequence: 1
  fullname: Mallika Rangasamy
– sequence: 2
  fullname: Saravanan Venketraman
BookMark eNqFjLFuwjAURT1QCdryBwzvB5CMYlwy0jQtCxPs6CV5IU8yz8h2RTP3x2tVdO50h3POfVQT8UITNVuV5XpprSmnah4jN9qYF6OttTP1vRWo-55bJklwSJg4Jm7Rwd535OAVI3VQOcxdtjL2Alt39oHTcIHehz84spyhQmkpwAcJQf11DZRJDt4wIdxyAXsWvuT3X-Pw2URK8Vk99Ogize_7pBbv9bHaLYfxRs1pGANhd9LaFBu9Kop_8A9EBE3N
ContentType Journal Article
DBID 9RA
DatabaseName HyRead台灣全文資料庫
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 066
ExternalDocumentID 00438013
GroupedDBID 9RA
ALMA_UNASSIGNED_HOLDINGS
M~E
ID FETCH-hyweb_hyread_004380133
ISSN 1995-6649
IngestDate Fri Nov 01 15:18:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-hyweb_hyread_004380133
ParticipantIDs hyweb_hyread_00438013
PublicationCentury 2000
PublicationDate 200912
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 200912
PublicationDecade 2000
PublicationPlace 台灣
PublicationPlace_xml – name: 台灣
PublicationTitle International Journal of Cyber Society and Education
PublicationYear 2009
Publisher Academy of Taiwan Information Systems Research
Publisher_xml – name: Academy of Taiwan Information Systems Research
SSID ssib044740666
Score 3.6486323
Snippet Data mining algorithms are extensively used to classify gene expression data, in which prediction of disease plays a vital role. This paper aims to develop a...
SourceID hyweb
SourceType Publisher
StartPage 051
SubjectTerms ANOVA P-values
Classification
Microarray Data
Prediction
SVM-OAA, LDA
Title An Efficient Statistical Model Based Classification Algorithm for Classifying Cancer Gene Expression Data with Minimal Gene Subsets
URI http://www.hyread.com.tw/hypage.cgi?HYPAGE=search/search_detail_new.hpg&dtd_id=3&sysid=00438013
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcb5OTFaMT4A00P3ggGRjfGcRIMMcGDQcONdKywBSgJDg0cvPiP-17b_RAxUS_LUpZu9NO0ry_f9x4h15bjur6wGFhuY6vKLDigcOGgIceE2gFbIwxO7j043Sd2P7AHhcJrTrW0iv2b0WZnXMl_qEIbcMUo2T-QTTuFBrgHvnAFwnD9FWNPYmXkSMU0KrNRZV3GaFusb1O5hR0q0GUvURCkUXuzyWIZxeFcCQzNjyrWqY0TYKkSUWMGZC2QlTAvYq7dtb1IRnPoXT2BK47QaaAS4_a7d9GYuu21Dx0nAlF01ae6kswjPptFU1555HLCX3gWZ4Euayz8LCvPQk5FvORzM6ETX0VrW_eRBcn0efTG0e2ZxmgmKdpTyWFuVcYwcsfRuU2TZdvKzU4rtwTXTAJbvZvXnK1E2wutz8NE-1jseK9RRyFo772TrEKMNRke6pQcwbwXTi7hWmtkE9Ojf0gOzEBST0-AI1LYhMfkw5M0hU9z8KmCTxV8-hU-TeFTGBCag081fIpoaQafInyK8KmBr58w8EukfNfpt7tV9dnDcA0nkGCY_O3GCSnKhRSnhNZ5TYAJLrgtmoy7gS-YK-xxy24Ert8c8zNS2tnF-Q_tF2Q_A18mxXi5EpdgtsX-lRrlTysuVk0
link.rule.ids 315,783,787
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Statistical+Model+Based+Classification+Algorithm+for+Classifying+Cancer+Gene+Expression+Data+with+Minimal+Gene+Subsets&rft.jtitle=International+Journal+of+Cyber+Society+and+Education&rft.au=Mallika+Rangasamy&rft.au=Saravanan+Venketraman&rft.date=2009-12-01&rft.pub=Academy+of+Taiwan+Information+Systems+Research&rft.issn=1995-6649&rft.volume=2&rft.issue=2&rft.spage=051&rft.epage=066&rft.externalDocID=00438013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-6649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-6649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-6649&client=summon