Time-penalised trees (TpT): a new tree-based data mining algorithm for time-varying covariates

This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Ot...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence
Main Author Valla, Mathias
Format Journal Article
LanguageEnglish
Published Springer Verlag 22.08.2024
Subjects
Online AccessGet full text
ISSN1012-2443
1573-7470

Cover

Loading…
Abstract This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Other existing methods suggest workaround solutions such as the pseudo-subject approach, discussed in the article. The proposed algorithm utilises a different structure and a time-penalised splitting criterion that allows a recursive partitioning of both the covariates space and time. Relevant historical trends are then inherently involved in the construction of a tree, and are visible and interpretable once it is fit. This approach allows for innovative and highly interpretable analysis in settings where the covariates are subject to change over time. The effectiveness of the algorithm is demonstrated through a real-world data application in life insurance. The results presented in this article can be seen as an introduction or proof-of-concept of our time-penalised approach, and the algorithm’s theoretical properties and comparison against existing approaches on datasets from various f ields, including healthcare, finance, insurance, environmental monitoring, and data mining in general, will be explored in forthcoming work.
AbstractList This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Other existing methods suggest workaround solutions such as the pseudo-subject approach, discussed in the article. The proposed algorithm utilises a different structure and a time-penalised splitting criterion that allows a recursive partitioning of both the covariates space and time. Relevant historical trends are then inherently involved in the construction of a tree, and are visible and interpretable once it is fit. This approach allows for innovative and highly interpretable analysis in settings where the covariates are subject to change over time. The effectiveness of the algorithm is demonstrated through a real-world data application in life insurance. The results presented in this article can be seen as an introduction or proof-of-concept of our time-penalised approach, and the algorithm’s theoretical properties and comparison against existing approaches on datasets from various f ields, including healthcare, finance, insurance, environmental monitoring, and data mining in general, will be explored in forthcoming work.
Author Valla, Mathias
Author_xml – sequence: 1
  givenname: Mathias
  orcidid: 0000-0003-4760-7849
  surname: Valla
  fullname: Valla, Mathias
  organization: Laboratoire de Sciences Actuarielle et Financière
BackLink https://hal.science/hal-04178282$$DView record in HAL
BookMark eNqVjE0OgjAUhBujiaDeoUtZNCk_ArozRsPCJWvJUx5QAy1pG4y3F4wXcDWT-WbGJXOpJM6I4--SkCVRwuej537AgigKl8Q15sk538dp7JBbLjpkPUpohcGSWo1o6Dbvc-9AgUp8fSN2h4mWYIF2QgpZU2hrpYVtOlopTe10M4B-T-ihRifAolmTRQWtwc1PV8S7nPNTxhpoi16LblwUCkSRHa_FlPHIT9IgDYYw_Kf7AeghSmQ
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Statistics
EISSN 1573-7470
ExternalDocumentID oai_HAL_hal_04178282v3
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1XC
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
VOOES
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
ID FETCH-hal_primary_oai_HAL_hal_04178282v33
ISSN 1012-2443
IngestDate Fri May 09 12:21:44 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Life insurance
Longitudinal study
Data-mining
Decision trees
Time-varying covariate
Algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_04178282v33
ORCID 0000-0003-4760-7849
0000-0003-4760-7849
OpenAccessLink https://hal.science/hal-04178282
ParticipantIDs hal_primary_oai_HAL_hal_04178282v3
PublicationCentury 2000
PublicationDate 2024-08-22
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-22
  day: 22
PublicationDecade 2020
PublicationTitle Annals of mathematics and artificial intelligence
PublicationYear 2024
Publisher Springer Verlag
Publisher_xml – name: Springer Verlag
SSID ssj0009686
Score 4.7155437
Snippet This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree...
SourceID hal
SourceType Open Access Repository
SubjectTerms Applications
Computer Science
Data Structures and Algorithms
Machine Learning
Mathematics
Methodology
Statistics
Title Time-penalised trees (TpT): a new tree-based data mining algorithm for time-varying covariates
URI https://hal.science/hal-04178282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS8MwFMaDzpf54GUq3gnig6NUtrbrxbdOHVW3IVhlT460y2zBbmPWgf71njRt08HA6UsobQltfiX5ctLzBaFz0xwo3pBYstGwPFmjqiaDKjIAiO_5ikXgI2H5zp2u7jxr971GT-y6lmSXxN6l_70wr-Q_VOEccGVZsn8gm1cKJ-AY-EIJhKFcjnEYUXlCmZb-AOHIFpiTIKo7cWGGz_OYQTYnF2Q2Xg0k9keoFCW7Qkjk_W08DeMg4v8asspmZPrF03DhKGQ6tKhehdtylLu9co9n9nCpF0VYMPnMcL6wcD1PDYqDkMzFGhSNBU8VMTPNYo1SIdbIu00Y5mQQCryromlXaqgyTFZqYqTJVtcd-6n_eNPqt--6D_NXc8drx273AwBS0-qgYUxlpq6iVbWuldCa3Wo2u8JYWU9288yfADRCkMXEE43gbqGNVNxjm5PaRit0VEGb2cYZOO1HK2i9I5qvgspM8HO_7B30Os8UJ0zxBRCtXmGCgSYWNDGjiTlNnNPEQBMXaWJBcxdVW7futSOzt55wp5H-4pZQ91BpNB7RfYR93zJMXTNI3axpus7EJgWNTPWhQYaeQQ7Q2e_1HS5z0xEqiy_iGJXi6Sc9AT0We6cpkh-6IEHQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-penalised+trees+%28TpT%29%3A+a+new+tree-based+data+mining+algorithm+for+time-varying+covariates&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Valla%2C+Mathias&rft.date=2024-08-22&rft.pub=Springer+Verlag&rft.issn=1012-2443&rft.eissn=1573-7470&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04178282v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon