Time-penalised trees (TpT): a new tree-based data mining algorithm for time-varying covariates
This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Ot...
Saved in:
Published in | Annals of mathematics and artificial intelligence |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Springer Verlag
22.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1012-2443 1573-7470 |
Cover
Loading…
Abstract | This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Other existing methods suggest workaround solutions such as the pseudo-subject approach, discussed in the article. The proposed algorithm utilises a different structure and a time-penalised splitting criterion that allows a recursive partitioning of both the covariates space and time. Relevant historical trends are then inherently involved in the construction of a tree, and are visible and interpretable once it is fit. This approach allows for innovative and highly interpretable analysis in settings where the covariates are subject to change over time. The effectiveness of the algorithm is demonstrated through a real-world data application in life insurance. The results presented in this article can be seen as an introduction or proof-of-concept of our time-penalised approach, and the algorithm’s theoretical properties and comparison against existing approaches on datasets from various f ields, including healthcare, finance, insurance, environmental monitoring, and data mining in general, will be explored in forthcoming work. |
---|---|
AbstractList | This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree algorithms assume that the covariates are static and do not change over time, which can lead to inaccurate predictions in dynamic environments. Other existing methods suggest workaround solutions such as the pseudo-subject approach, discussed in the article. The proposed algorithm utilises a different structure and a time-penalised splitting criterion that allows a recursive partitioning of both the covariates space and time. Relevant historical trends are then inherently involved in the construction of a tree, and are visible and interpretable once it is fit. This approach allows for innovative and highly interpretable analysis in settings where the covariates are subject to change over time. The effectiveness of the algorithm is demonstrated through a real-world data application in life insurance. The results presented in this article can be seen as an introduction or proof-of-concept of our time-penalised approach, and the algorithm’s theoretical properties and comparison against existing approaches on datasets from various f ields, including healthcare, finance, insurance, environmental monitoring, and data mining in general, will be explored in forthcoming work. |
Author | Valla, Mathias |
Author_xml | – sequence: 1 givenname: Mathias orcidid: 0000-0003-4760-7849 surname: Valla fullname: Valla, Mathias organization: Laboratoire de Sciences Actuarielle et Financière |
BackLink | https://hal.science/hal-04178282$$DView record in HAL |
BookMark | eNqVjE0OgjAUhBujiaDeoUtZNCk_ArozRsPCJWvJUx5QAy1pG4y3F4wXcDWT-WbGJXOpJM6I4--SkCVRwuej537AgigKl8Q15sk538dp7JBbLjpkPUpohcGSWo1o6Dbvc-9AgUp8fSN2h4mWYIF2QgpZU2hrpYVtOlopTe10M4B-T-ihRifAolmTRQWtwc1PV8S7nPNTxhpoi16LblwUCkSRHa_FlPHIT9IgDYYw_Kf7AeghSmQ |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Mathematics Statistics |
EISSN | 1573-7470 |
ExternalDocumentID | oai_HAL_hal_04178282v3 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1XC 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 VOOES W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX |
ID | FETCH-hal_primary_oai_HAL_hal_04178282v33 |
ISSN | 1012-2443 |
IngestDate | Fri May 09 12:21:44 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life insurance Longitudinal study Data-mining Decision trees Time-varying covariate Algorithm |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-hal_primary_oai_HAL_hal_04178282v33 |
ORCID | 0000-0003-4760-7849 0000-0003-4760-7849 |
OpenAccessLink | https://hal.science/hal-04178282 |
ParticipantIDs | hal_primary_oai_HAL_hal_04178282v3 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-22 |
PublicationDateYYYYMMDD | 2024-08-22 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Annals of mathematics and artificial intelligence |
PublicationYear | 2024 |
Publisher | Springer Verlag |
Publisher_xml | – name: Springer Verlag |
SSID | ssj0009686 |
Score | 4.7155437 |
Snippet | This article introduces a new decision tree algorithm that accounts for time-varying covariates in the decision-making process. Traditional decision tree... |
SourceID | hal |
SourceType | Open Access Repository |
SubjectTerms | Applications Computer Science Data Structures and Algorithms Machine Learning Mathematics Methodology Statistics |
Title | Time-penalised trees (TpT): a new tree-based data mining algorithm for time-varying covariates |
URI | https://hal.science/hal-04178282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS8MwFMaDzpf54GUq3gnig6NUtrbrxbdOHVW3IVhlT460y2zBbmPWgf71njRt08HA6UsobQltfiX5ctLzBaFz0xwo3pBYstGwPFmjqiaDKjIAiO_5ikXgI2H5zp2u7jxr971GT-y6lmSXxN6l_70wr-Q_VOEccGVZsn8gm1cKJ-AY-EIJhKFcjnEYUXlCmZb-AOHIFpiTIKo7cWGGz_OYQTYnF2Q2Xg0k9keoFCW7Qkjk_W08DeMg4v8asspmZPrF03DhKGQ6tKhehdtylLu9co9n9nCpF0VYMPnMcL6wcD1PDYqDkMzFGhSNBU8VMTPNYo1SIdbIu00Y5mQQCryromlXaqgyTFZqYqTJVtcd-6n_eNPqt--6D_NXc8drx273AwBS0-qgYUxlpq6iVbWuldCa3Wo2u8JYWU9288yfADRCkMXEE43gbqGNVNxjm5PaRit0VEGb2cYZOO1HK2i9I5qvgspM8HO_7B30Os8UJ0zxBRCtXmGCgSYWNDGjiTlNnNPEQBMXaWJBcxdVW7futSOzt55wp5H-4pZQ91BpNB7RfYR93zJMXTNI3axpus7EJgWNTPWhQYaeQQ7Q2e_1HS5z0xEqiy_iGJXi6Sc9AT0We6cpkh-6IEHQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-penalised+trees+%28TpT%29%3A+a+new+tree-based+data+mining+algorithm+for+time-varying+covariates&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Valla%2C+Mathias&rft.date=2024-08-22&rft.pub=Springer+Verlag&rft.issn=1012-2443&rft.eissn=1573-7470&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04178282v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |