Generic semi-supervised adversarial subject translation for sensor-based activity recognition Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promisin
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 500; pp. 649 - 661 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Author | Amirat, Yacine Chibani, Abdelghani Soleimani, Elnaz Khodabandelou, Ghazaleh |
---|---|
Author_xml | – sequence: 1 givenname: Elnaz surname: Soleimani fullname: Soleimani, Elnaz organization: Laboratoire Images, Signaux et Systèmes Intelligents – sequence: 2 givenname: Ghazaleh orcidid: 0000-0002-8078-8461 surname: Khodabandelou fullname: Khodabandelou, Ghazaleh organization: Laboratoire Images, Signaux et Systèmes Intelligents – sequence: 3 givenname: Abdelghani orcidid: 0000-0001-7122-1271 surname: Chibani fullname: Chibani, Abdelghani organization: Laboratoire Images, Signaux et Systèmes Intelligents – sequence: 4 givenname: Yacine orcidid: 0000-0002-3238-0517 surname: Amirat fullname: Amirat, Yacine organization: Laboratoire Images, Signaux et Systèmes Intelligents |
BackLink | https://hal.u-pec.fr/hal-04030634$$DView record in HAL |
BookMark | eNqVi7FOwzAQQD0UiRb4AwavDDFnp2nVESGgA2NXFF3dK1yU2NWdE6l_D0X8ANOTnt5bmFnKiYy59-A8-NVj5xKNMQ8uQAgOGgfrZmbmsAlNFWofrs1CtQPwax82c_PxRomEo1UauNLxRDKx0sHiYSJRFMbe6rjvKBZbBJP2WDgne8zy8yTNUu3xd4iFJy5nKxTzZ-JLdWuujtgr3f3xxjy8vuyet9UX9u1JeEA5txm53T69txcHS6hhVS8nX_-n_QYVS1FS |
ContentType | Journal Article |
Copyright | Attribution - NonCommercial |
Copyright_xml | – notice: Attribution - NonCommercial |
DBID | 1XC VOOES |
DOI | 10.1016/j.neucom.2022.05.075 |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 661 |
ExternalDocumentID | oai_HAL_hal_04030634v1 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1XC 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SSN SSV SSZ T5K VOOES WUQ XPP ZMT ~G- |
ID | FETCH-hal_primary_oai_HAL_hal_04030634v13 |
ISSN | 0925-2312 |
IngestDate | Fri May 09 12:18:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | OpenURL |
MergedId | FETCHMERGED-hal_primary_oai_HAL_hal_04030634v13 |
ORCID | 0000-0001-7122-1271 0000-0002-3238-0517 0000-0002-8078-8461 0000-0002-3238-0517 0000-0001-7122-1271 0000-0002-8078-8461 |
OpenAccessLink | https://hal.u-pec.fr/hal-04030634 |
ParticipantIDs | hal_primary_oai_HAL_hal_04030634v1 |
PublicationCentury | 2000 |
PublicationDate | 2022-08 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
SSID | ssj0017129 |
Score | 4.708441 |
SourceID | hal |
SourceType | Open Access Repository |
StartPage | 649 |
SubjectTerms | Artificial Intelligence Computer Science |
Subtitle | Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promisin |
Title | Generic semi-supervised adversarial subject translation for sensor-based activity recognition |
URI | https://hal.u-pec.fr/hal-04030634 |
Volume | 500 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvXjxbXxnY7wYUgJ9AccGIVWRmIAJF9NsH9gSaAmlHjj4V_yrzm63SxES0UsDZSmU-ZjZ-TLzDUK3tkNbHHVFqjsVW1Kr5YFEPMWVao7m1nVNVgmhjcLPHd18VR_7Wr9Q-MpVLSUzu-TM1_aV_MeqcA7sSrtk_2BZcVE4AY_BvnAEC8NxIxszzejAKcbeOJDiZEL_9zHsIAmdshwTNpAjTmxKtdBZEGE8WpQWxpC_RlOJRjGXKWqwIRKinohba5iJOyUQ6NgACE4tGGOqsOBSOAkqoRuNvGCcDokqNkchmQt37kcusSlfPYoSRsX7ZA6hSXDRDT-w-RsNG1a9-_BMgHFMiwFYsCCiDoAzFZDkZnVynD7jsT7PQcqaBBvMJXeslcs5h6qngqY8NuupcPuK208ZiGEp9BJaA0Q_nOmxpkNZllW2TaNrvdy3rPZD52n5VSG3bRptywc0gIODjEpRPyC93pYhD6EjMkqfooaoUq3IqZgjv4-sN5MVEK5-Gdi_-Blfz_YvvX20yxMPbKQoOkAFLzxEe9lQD8x9_BF646DCP0CFc6DCHFQ4ByoMoMJ5UOEMVDgHqmN012r2GqZEb3ySKp1Y638M5QRthVHonSLsqGUHEnxFUzSiVtwBqTk6rBu4kAYTmdTP0M3v1zvfZNEF2llg6hJtzaaJdwX7wZl9zWzyDbAEbGY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+semi-supervised+adversarial+subject+translation+for+sensor-based+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soleimani%2C+Elnaz&rft.au=Khodabandelou%2C+Ghazaleh&rft.au=Chibani%2C+Abdelghani&rft.au=Amirat%2C+Yacine&rft.date=2022-08-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=500&rft.spage=649&rft.epage=661&rft_id=info:doi/10.1016%2Fj.neucom.2022.05.075&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04030634v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |