Generic semi-supervised adversarial subject translation for sensor-based activity recognition Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promisin

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 500; pp. 649 - 661
Main Authors Soleimani, Elnaz, Khodabandelou, Ghazaleh, Chibani, Abdelghani, Amirat, Yacine
Format Journal Article
LanguageEnglish
Published Elsevier 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Author Amirat, Yacine
Chibani, Abdelghani
Soleimani, Elnaz
Khodabandelou, Ghazaleh
Author_xml – sequence: 1
  givenname: Elnaz
  surname: Soleimani
  fullname: Soleimani, Elnaz
  organization: Laboratoire Images, Signaux et Systèmes Intelligents
– sequence: 2
  givenname: Ghazaleh
  orcidid: 0000-0002-8078-8461
  surname: Khodabandelou
  fullname: Khodabandelou, Ghazaleh
  organization: Laboratoire Images, Signaux et Systèmes Intelligents
– sequence: 3
  givenname: Abdelghani
  orcidid: 0000-0001-7122-1271
  surname: Chibani
  fullname: Chibani, Abdelghani
  organization: Laboratoire Images, Signaux et Systèmes Intelligents
– sequence: 4
  givenname: Yacine
  orcidid: 0000-0002-3238-0517
  surname: Amirat
  fullname: Amirat, Yacine
  organization: Laboratoire Images, Signaux et Systèmes Intelligents
BackLink https://hal.u-pec.fr/hal-04030634$$DView record in HAL
BookMark eNqVi7FOwzAQQD0UiRb4AwavDDFnp2nVESGgA2NXFF3dK1yU2NWdE6l_D0X8ANOTnt5bmFnKiYy59-A8-NVj5xKNMQ8uQAgOGgfrZmbmsAlNFWofrs1CtQPwax82c_PxRomEo1UauNLxRDKx0sHiYSJRFMbe6rjvKBZbBJP2WDgne8zy8yTNUu3xd4iFJy5nKxTzZ-JLdWuujtgr3f3xxjy8vuyet9UX9u1JeEA5txm53T69txcHS6hhVS8nX_-n_QYVS1FS
ContentType Journal Article
Copyright Attribution - NonCommercial
Copyright_xml – notice: Attribution - NonCommercial
DBID 1XC
VOOES
DOI 10.1016/j.neucom.2022.05.075
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 661
ExternalDocumentID oai_HAL_hal_04030634v1
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1XC
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
VOOES
WUQ
XPP
ZMT
~G-
ID FETCH-hal_primary_oai_HAL_hal_04030634v13
ISSN 0925-2312
IngestDate Fri May 09 12:18:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_04030634v13
ORCID 0000-0001-7122-1271
0000-0002-3238-0517
0000-0002-8078-8461
0000-0002-3238-0517
0000-0001-7122-1271
0000-0002-8078-8461
OpenAccessLink https://hal.u-pec.fr/hal-04030634
ParticipantIDs hal_primary_oai_HAL_hal_04030634v1
PublicationCentury 2000
PublicationDate 2022-08
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0017129
Score 4.708441
SourceID hal
SourceType Open Access Repository
StartPage 649
SubjectTerms Artificial Intelligence
Computer Science
Subtitle Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promisin
Title Generic semi-supervised adversarial subject translation for sensor-based activity recognition
URI https://hal.u-pec.fr/hal-04030634
Volume 500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvXjxbXxnY7wYUgJ9AccGIVWRmIAJF9NsH9gSaAmlHjj4V_yrzm63SxES0UsDZSmU-ZjZ-TLzDUK3tkNbHHVFqjsVW1Kr5YFEPMWVao7m1nVNVgmhjcLPHd18VR_7Wr9Q-MpVLSUzu-TM1_aV_MeqcA7sSrtk_2BZcVE4AY_BvnAEC8NxIxszzejAKcbeOJDiZEL_9zHsIAmdshwTNpAjTmxKtdBZEGE8WpQWxpC_RlOJRjGXKWqwIRKinohba5iJOyUQ6NgACE4tGGOqsOBSOAkqoRuNvGCcDokqNkchmQt37kcusSlfPYoSRsX7ZA6hSXDRDT-w-RsNG1a9-_BMgHFMiwFYsCCiDoAzFZDkZnVynD7jsT7PQcqaBBvMJXeslcs5h6qngqY8NuupcPuK208ZiGEp9BJaA0Q_nOmxpkNZllW2TaNrvdy3rPZD52n5VSG3bRptywc0gIODjEpRPyC93pYhD6EjMkqfooaoUq3IqZgjv4-sN5MVEK5-Gdi_-Blfz_YvvX20yxMPbKQoOkAFLzxEe9lQD8x9_BF646DCP0CFc6DCHFQ4ByoMoMJ5UOEMVDgHqmN012r2GqZEb3ySKp1Y638M5QRthVHonSLsqGUHEnxFUzSiVtwBqTk6rBu4kAYTmdTP0M3v1zvfZNEF2llg6hJtzaaJdwX7wZl9zWzyDbAEbGY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+semi-supervised+adversarial+subject+translation+for+sensor-based+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soleimani%2C+Elnaz&rft.au=Khodabandelou%2C+Ghazaleh&rft.au=Chibani%2C+Abdelghani&rft.au=Amirat%2C+Yacine&rft.date=2022-08-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=500&rft.spage=649&rft.epage=661&rft_id=info:doi/10.1016%2Fj.neucom.2022.05.075&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04030634v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon