PERMANOVA testing and Poisson Log-Normal modelling unravel how two traditional cheeses are distinguished through sorting and verbalization tasks

This study uses two statistical methods (PLN modelling and PERMANOVA) to investigate the differences in the ways in which different panels perceive and describe two French uncooked PDO cheeses in a free sorting task and then in a verbalization task.Panelists studied 10 cheeses from two categories Sa...

Full description

Saved in:
Bibliographic Details
Published inFood quality and preference Vol. 104; no. 1
Main Authors Grollemund, P.-M., Lenoir, L., Benoit, J., Chassard, Christophe, Bord, C.
Format Journal Article
LanguageEnglish
Published Elsevier 05.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study uses two statistical methods (PLN modelling and PERMANOVA) to investigate the differences in the ways in which different panels perceive and describe two French uncooked PDO cheeses in a free sorting task and then in a verbalization task.Panelists studied 10 cheeses from two categories Salers and Cantal cheese made from Salers-breed cow's milk or cow's milk from other breeds. We selected three types of panel based on their technical expertise in relation to the supply chain (professional technical experts, wholesalers, and consumers) and verified their level of expertise using a knowledge questionnaire to test o their knowledge of cheese in general and Salers and Cantal cheeses in particular. Data from the sorting task was analyzed using the DISTATIS method, and data from the verbalization task was analyzed using a basic correspondence analysis. Furthermore, we employed an original approach mobilising PERMANOVA and a Poisson log-normal (PLN) model enabling us to investigate and quantify which exogeneous variables contribute most to explain verbalization data.The results unsurprisingly showed broadly overlapping cheese configurations between the three panels. However, none of the panels clearly separated Cantal from Salers cheeses. In the verbalization task, different types of panel used different sets of terms to describe the categories. The professional panel preferentially used descriptive terms related to flavor whereas the wholesaler and consumer panels both tended to use quantitative (intensity) and hedonic terms. PLN modelling revealed that the knowledge variable was one of the variables that best explains the use of different word categories between panels. PERMANOVA testing and PLN modelling emerged as novel approaches for identifying the key variables that explain the use of terms in the description task.
AbstractList This study uses two statistical methods (PLN modelling and PERMANOVA) to investigate the differences in the ways in which different panels perceive and describe two French uncooked PDO cheeses in a free sorting task and then in a verbalization task.Panelists studied 10 cheeses from two categories Salers and Cantal cheese made from Salers-breed cow's milk or cow's milk from other breeds. We selected three types of panel based on their technical expertise in relation to the supply chain (professional technical experts, wholesalers, and consumers) and verified their level of expertise using a knowledge questionnaire to test o their knowledge of cheese in general and Salers and Cantal cheeses in particular. Data from the sorting task was analyzed using the DISTATIS method, and data from the verbalization task was analyzed using a basic correspondence analysis. Furthermore, we employed an original approach mobilising PERMANOVA and a Poisson log-normal (PLN) model enabling us to investigate and quantify which exogeneous variables contribute most to explain verbalization data.The results unsurprisingly showed broadly overlapping cheese configurations between the three panels. However, none of the panels clearly separated Cantal from Salers cheeses. In the verbalization task, different types of panel used different sets of terms to describe the categories. The professional panel preferentially used descriptive terms related to flavor whereas the wholesaler and consumer panels both tended to use quantitative (intensity) and hedonic terms. PLN modelling revealed that the knowledge variable was one of the variables that best explains the use of different word categories between panels. PERMANOVA testing and PLN modelling emerged as novel approaches for identifying the key variables that explain the use of terms in the description task.
Author Benoit, J.
Bord, C.
Lenoir, L.
Grollemund, P.-M.
Chassard, Christophe
Author_xml – sequence: 1
  givenname: P.-M.
  surname: Grollemund
  fullname: Grollemund, P.-M.
  organization: Laboratoire de Mathématiques Blaise Pascal
– sequence: 2
  givenname: L.
  surname: Lenoir
  fullname: Lenoir, L.
  organization: Unité Mixte de Recherche sur le Fromage
– sequence: 3
  givenname: J.
  surname: Benoit
  fullname: Benoit, J.
  organization: Unité Mixte de Recherche sur le Fromage
– sequence: 4
  givenname: Christophe
  surname: Chassard
  fullname: Chassard, Christophe
  organization: Unité Mixte de Recherche sur le Fromage
– sequence: 5
  givenname: C.
  surname: Bord
  fullname: Bord, C.
  organization: Unité Mixte de Recherche sur le Fromage
BackLink https://uca.hal.science/hal-03878377$$DView record in HAL
BookMark eNqVjcFOwzAQRH0oEi3wDeyVQ4qdpEpyjFBRD6VUCHGNFmJig-NFXicVfAWfDEGIO6eRRu_NLMTMk9dCnCu5VFKml1VRKqXKPF8plS45YpRFmauZmMtqJZMsrbJjsWB-kVIVUqVz8blf393Uu9uHGqLmaH0H6FvYk2UmD1vqkh2FHh301GrnJmDwAUftwNAB4oEgBmxttOS_qSejNWsGDBpa-zM4WDa6hWgCDZ0BpvB3M-rwiM5-4GRDRH7lU3H0jI712W-eiIvr9f3VJjHomrdgewzvDaFtNvW2mTqZlUWZFcWosv-wX73PY6U
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
DOI 10.1002/9781118445112.stat07841
DatabaseName Hyper Article en Ligne (HAL)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Diet & Clinical Nutrition
ExternalDocumentID oai_HAL_hal_03878377v1
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1XC
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXLA
AAXUO
ABFRF
ABGRD
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSA
SSN
SSZ
T5K
UNMZH
WH7
Y6R
~G-
~KM
ID FETCH-hal_primary_oai_HAL_hal_03878377v13
ISSN 0950-3293
IngestDate Tue Oct 15 15:40:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PDO cheeses
PLN model
Verbalization task
Free sorting
PERMANOVA
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_03878377v13
ParticipantIDs hal_primary_oai_HAL_hal_03878377v1
PublicationCentury 2000
PublicationDate 2022-10-05
PublicationDateYYYYMMDD 2022-10-05
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-05
  day: 05
PublicationDecade 2020
PublicationTitle Food quality and preference
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0017012
Score 4.792797
Snippet This study uses two statistical methods (PLN modelling and PERMANOVA) to investigate the differences in the ways in which different panels perceive and...
SourceID hal
SourceType Open Access Repository
SubjectTerms Food engineering
Life Sciences
Statistics
Title PERMANOVA testing and Poisson Log-Normal modelling unravel how two traditional cheeses are distinguished through sorting and verbalization tasks
URI https://uca.hal.science/hal-03878377
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5F7aUXBAVEKVQjhJCqyG7qH0KOpkkUIDURtFVv0dpZK1GDjWKbqhx4Bt6FF2Rmd712RKu2XKxokqytnU_e-f2Gsddez4njJPEsv5O4ludwbqEbMbMiXwgvclwX_0fVFuHb0an38dw_b7X-NKqWyiKy45_X9pX8j1ZRhnqlLtl7aNYsigL8jPrFK2oYr3fS8WTw5TgIP58F7YLIMnS74STDzczkNF4rJJN0qebdyMbzMqV5Q8v2nEbJXWY0ImK20PFA1J_IRd6mYrDZQi5YUsn8zEzzybOVuQ3uVsSXuo2zXfD8Im9aukOiS1Ytm1cVG4HuLaxrfihq8a1Use2JbR3bdX1Qmi0kmMZG9p5kKnViZEdzNP65Ks-veRKaoQz0gmUivo6vaWNgLUiJp4SjZiia97WaV9wE5j_ngOKVJT4vdKAkB5tjU4dWh9Ks9dFXpftHwdfppD-cjj-En9a_NRTco2A8nSNCKN2PTn33B7rcmw6-3aiO0P5l6oqI395RBI_q0auiwo5zcMPzoFkzr8L40qw5ecgeaH8EAgWuR6wl0m2201-IAt6AJo1dQljNbNhmW-SeKHbvx-y3QSBoBAKqGjQCoUYgGASCRiAgAgERCA0EgkYgIAJhDYGgEQgagfI2awgEicAnbH84ODkaWbSJ3xWTyvT6jXWfso00S8UzBp73rhPHh1y4Xe4lPOFddD_cmPd8Hvvc7-2wV7ev9_wuP9plWzUkX7CNYlWKl2hvFtGe1O9f8tqNMg
link.rule.ids 230,315,783,787,888,27938,27939
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PERMANOVA+testing+and+Poisson+Log-Normal+modelling+unravel+how+two+traditional+cheeses+are+distinguished+through+sorting+and+verbalization+tasks&rft.jtitle=Food+quality+and+preference&rft.au=Grollemund%2C+P.-M.&rft.au=Lenoir%2C+L.&rft.au=Benoit%2C+J.&rft.au=Chassard%2C+Christophe&rft.date=2022-10-05&rft.pub=Elsevier&rft.issn=0950-3293&rft.volume=104&rft.issue=1&rft_id=info:doi/10.1002%2F9781118445112.stat07841&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03878377v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-3293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-3293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-3293&client=summon