Prediction of Breast Cancer Treatment\textendashInduced Fatigue by Machine Learning Using Genome-Wide Association Data

Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endp...

Full description

Saved in:
Bibliographic Details
Published inJNCI cancer spectrum Vol. 4; no. 5
Main Authors Lee, Sangkyu, Deasy, Joseph O, Oh, Jung Hun, Di Meglio, Antonio, Dumas, Agnès, Menvielle, Gwenn, Charles, Cecile, Boyault, Sandrine, Rousseau, Marina, Besse, Celine, Thomas, Emilie, Boland, Anne, Cottu, Paul, Tredan, Olivier, Levy, Christelle, Martin, Anne-Laure, Everhard, Sibille, Ganz, Patricia A, Partridge, Ann H, Michiels, Stefan, Deleuze, Jean-François, Andre, Fabrice, Vaz-Luis, Ines
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher than quartile 3 at 1\,year after primary treatment completion on European Organization for Research and Treatment of Cancer quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants. Then, using preselected clinical (false discovery rate < 0.05) and genomic (P\,<\,.001) variables, a multivariable preconditioned random-forest regression model was built and validated on a hold-out subset to predict fatigue. Gene set enrichment analysis identified key biological correlates (MetaCore). All statistical tests were 2-sided. Results Statistically significant clinical associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain. Some single nucleotide polymorphisms had some degree of association (P\,<\,.001) with the different fatigue endpoints, although there were no genome-wide statistically significant (P\,<\,5.00 \texttimes 10-8) associations. Only for Cognitive Fatigue, the predictive ability of the genomic multivariable model was statistically significantly better than random (area under the curve = 0.59, P\,=\,.01) and marginally improved with clinical variables (area under the curve\,=\,0.60, P\,=\,.005). Single nucleotide polymorphisms found to be associated (P\,<\,.001) with Cognitive Fatigue belonged to genes linked to inflammation (false discovery rate adjusted P\,=\,.03), cognitive disorders (P\,=\,1.51 \texttimes 10-12), and synaptic transmission (P\,=\,6.28 \texttimes 10-8). Conclusions Genomic analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that warrants further exploration.
AbstractList Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher than quartile 3 at 1\,year after primary treatment completion on European Organization for Research and Treatment of Cancer quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants. Then, using preselected clinical (false discovery rate < 0.05) and genomic (P\,<\,.001) variables, a multivariable preconditioned random-forest regression model was built and validated on a hold-out subset to predict fatigue. Gene set enrichment analysis identified key biological correlates (MetaCore). All statistical tests were 2-sided. Results Statistically significant clinical associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain. Some single nucleotide polymorphisms had some degree of association (P\,<\,.001) with the different fatigue endpoints, although there were no genome-wide statistically significant (P\,<\,5.00 \texttimes 10-8) associations. Only for Cognitive Fatigue, the predictive ability of the genomic multivariable model was statistically significantly better than random (area under the curve = 0.59, P\,=\,.01) and marginally improved with clinical variables (area under the curve\,=\,0.60, P\,=\,.005). Single nucleotide polymorphisms found to be associated (P\,<\,.001) with Cognitive Fatigue belonged to genes linked to inflammation (false discovery rate adjusted P\,=\,.03), cognitive disorders (P\,=\,1.51 \texttimes 10-12), and synaptic transmission (P\,=\,6.28 \texttimes 10-8). Conclusions Genomic analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that warrants further exploration.
Author Menvielle, Gwenn
Tredan, Olivier
Vaz-Luis, Ines
Lee, Sangkyu
Di Meglio, Antonio
Besse, Celine
Ganz, Patricia A
Dumas, Agnès
Charles, Cecile
Cottu, Paul
Andre, Fabrice
Deleuze, Jean-François
Martin, Anne-Laure
Deasy, Joseph O
Partridge, Ann H
Everhard, Sibille
Rousseau, Marina
Boland, Anne
Michiels, Stefan
Oh, Jung Hun
Boyault, Sandrine
Thomas, Emilie
Levy, Christelle
Author_xml – sequence: 1
  givenname: Sangkyu
  surname: Lee
  fullname: Lee, Sangkyu
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 2
  givenname: Joseph O
  surname: Deasy
  fullname: Deasy, Joseph O
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 3
  givenname: Jung Hun
  surname: Oh
  fullname: Oh, Jung Hun
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: Antonio
  surname: Di Meglio
  fullname: Di Meglio, Antonio
  organization: Institut Gustave Roussy
– sequence: 5
  givenname: Agnès
  orcidid: 0000-0001-7948-6952
  surname: Dumas
  fullname: Dumas, Agnès
  organization: Centre de recherche en épidémiologie et santé des populations
– sequence: 6
  givenname: Gwenn
  orcidid: 0000-0002-3261-6366
  surname: Menvielle
  fullname: Menvielle, Gwenn
  organization: Institut Pierre Louis d'Epidémiologie et de Santé Publique
– sequence: 7
  givenname: Cecile
  surname: Charles
  fullname: Charles, Cecile
  organization: Institut Gustave Roussy
– sequence: 8
  givenname: Sandrine
  surname: Boyault
  fullname: Boyault, Sandrine
  organization: Centre Léon Bérard [Lyon]
– sequence: 9
  givenname: Marina
  surname: Rousseau
  fullname: Rousseau, Marina
  organization: Centre Léon Bérard [Lyon]
– sequence: 10
  givenname: Celine
  surname: Besse
  fullname: Besse, Celine
  organization: Centre National de Recherche en Génomique Humaine
– sequence: 11
  givenname: Emilie
  surname: Thomas
  fullname: Thomas, Emilie
  organization: Centre Léon Bérard [Lyon]
– sequence: 12
  givenname: Anne
  surname: Boland
  fullname: Boland, Anne
  organization: Centre National de Recherche en Génomique Humaine
– sequence: 13
  givenname: Paul
  orcidid: 0000-0001-6434-3932
  surname: Cottu
  fullname: Cottu, Paul
  organization: Institut Curie [Paris]
– sequence: 14
  givenname: Olivier
  surname: Tredan
  fullname: Tredan, Olivier
  organization: Centre Léon Bérard [Lyon]
– sequence: 15
  givenname: Christelle
  orcidid: 0000-0003-0572-5222
  surname: Levy
  fullname: Levy, Christelle
  organization: Centre Régional de Lutte contre le Cancer François Baclesse [Caen]
– sequence: 16
  givenname: Anne-Laure
  surname: Martin
  fullname: Martin, Anne-Laure
  organization: UNICANCER
– sequence: 17
  givenname: Sibille
  surname: Everhard
  fullname: Everhard, Sibille
  organization: UNICANCER
– sequence: 18
  givenname: Patricia A
  surname: Ganz
  fullname: Ganz, Patricia A
  organization: University of California [Los Angeles]
– sequence: 19
  givenname: Ann H
  surname: Partridge
  fullname: Partridge, Ann H
  organization: Dana-Farber Cancer Institute [Boston]
– sequence: 20
  givenname: Stefan
  orcidid: 0000-0002-6963-2968
  surname: Michiels
  fullname: Michiels, Stefan
  organization: Centre de recherche en épidémiologie et santé des populations
– sequence: 21
  givenname: Jean-François
  surname: Deleuze
  fullname: Deleuze, Jean-François
  organization: Centre National de Recherche en Génomique Humaine
– sequence: 22
  givenname: Fabrice
  surname: Andre
  fullname: Andre, Fabrice
  organization: Prédicteurs moléculaires et nouvelles cibles en oncologie
– sequence: 23
  givenname: Ines
  surname: Vaz-Luis
  fullname: Vaz-Luis, Ines
  organization: Prédicteurs moléculaires et nouvelles cibles en oncologie
BackLink https://hal.sorbonne-universite.fr/hal-03833310$$DView record in HAL
BookMark eNqVjUFPAjEQhRujEVSunufqYaW1LqFHRBETTDxgvJhsxu7ADrJT0hYi_14x_gEv7-V7-ZJ3po4lCCl1afS10c72V-LZp_7mE1Fbd6S6N6Upi1I701G9lFZaa-OcK93gVHWsvXV6OLBdtXuJVLPPHATCAu4iYcowRvEUYf5DuSXJ75m-MkmNqXmSeuuphglmXm4JPvbwjL5hIZgRRmFZwms65CNJaKl445pglFLwjL8395jxQp0scJ2o99fn6mryMB9PiwbX1SZyi3FfBeRqOppVh03bobXW6J2x_3G_AVdGWsI
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1093/jncics/pkaa039
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2515-5091
ExternalDocumentID oai_HAL_hal_03833310v1
GroupedDBID 0R~
1XC
53G
AAFWJ
AAPPN
AAPXW
AAVAP
ABPTD
ABXVV
ACGFS
ADBBV
AENZO
AFULF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAYMD
BCNDV
BTTYL
EBS
EMOBN
GROUPED_DOAJ
HYE
IAO
ITC
KSI
ML0
OK1
ROX
RPM
TJX
TOX
VOOES
ID FETCH-hal_primary_oai_HAL_hal_03833310v13
IngestDate Tue Oct 15 16:04:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_03833310v13
Notes PMCID: PMC7583150
ORCID 0000-0003-0572-5222
0000-0002-3261-6366
0000-0001-6434-3932
0000-0001-7948-6952
0000-0002-6963-2968
0000-0002-3261-6366
0000-0002-6963-2968
0000-0001-6434-3932
0000-0001-7948-6952
0000-0003-0572-5222
OpenAccessLink http://dx.doi.org/10.1093/jncics/pkaa039
PMID 33490863
ParticipantIDs hal_primary_oai_HAL_hal_03833310v1
PublicationCentury 2000
PublicationDate 2020-10
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10
PublicationDecade 2020
PublicationTitle JNCI cancer spectrum
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0001999596
Score 4.3511934
Snippet Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We...
SourceID hal
SourceType Open Access Repository
SubjectTerms Life Sciences
Title Prediction of Breast Cancer Treatment\textendashInduced Fatigue by Machine Learning Using Genome-Wide Association Data
URI https://hal.sorbonne-universite.fr/hal-03833310
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZTsJAFJ0QTAwvRqPGlUyMPpimUukCPCKIRdkSMPJgQtoyUERagoUE_8y_885MNyJxe2lIS6ZT7sntuXfOHBA6NxQZygpZEUnWGogKlBCiqZqaaMl9eN1aWl5jfch6Q9Mflfuu2k0kPmKqpblnXlnva_eV_CeqcA7iSnfJ_iGy4aBwAj5DfOEIEYbjr2LcmtFlloDz3VB9uSeUaBxnQidQkF-oJY-3uo03m_5TB13xr8AIwzmh5LPO5JQkcFodClxFcEccd0LEp1GfxGMIMPGMFUbbKFWpdIzek23bDMwdIpVP23CG4-U85MwwzWW0-iA0w0avzfeJwN31eQja8kiok-HryPW9DiAJufFeBRSmgerN-24PJH8VsZwHbEsVKYeJJ2glhkN1bdrnllgvjsXEVZXp2DAk7pEUQ8F0wmAgy3St08-qK_7berHda5UrvVq18bB6NTTi1ou1ng04kaCwl4EZL6Dw3shCjqNqwk6zG7X3CtTITQttQuUMn13Gn1sKbQYTAVZjB118xmo622jLL0dwkWNrByWIs4sWEa6wO8AcV5jjCoe4ev6CKuyjCptL7KMKB6jCDFU4hiocQxWmqNpDl5XbTkkX6aNPuQtKb_3PIe-jpOM65ABhVbomTKWck0xFUnJGX81Z8LxAoLMFw8oforOfxzv6zZeOUSpC2wlKAtLJKXBFz0yzHkuaxeYT2VR1OA
link.rule.ids 230,315,783,787,867,888,27938,27939
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Breast+Cancer+Treatment%5CtextendashInduced+Fatigue+by+Machine+Learning+Using+Genome-Wide+Association+Data&rft.jtitle=JNCI+cancer+spectrum&rft.au=Lee%2C+Sangkyu&rft.au=Deasy%2C+Joseph+O&rft.au=Oh%2C+Jung+Hun&rft.au=Di+Meglio%2C+Antonio&rft.date=2020-10-01&rft.pub=Oxford+University+Press&rft.eissn=2515-5091&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1093%2Fjncics%2Fpkaa039&rft_id=info%3Apmid%2F33490863&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03833310v1