Prediction of Breast Cancer Treatment\textendashInduced Fatigue by Machine Learning Using Genome-Wide Association Data
Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endp...
Saved in:
Published in | JNCI cancer spectrum Vol. 4; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher than quartile 3 at 1\,year after primary treatment completion on European Organization for Research and Treatment of Cancer quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants. Then, using preselected clinical (false discovery rate < 0.05) and genomic (P\,<\,.001) variables, a multivariable preconditioned random-forest regression model was built and validated on a hold-out subset to predict fatigue. Gene set enrichment analysis identified key biological correlates (MetaCore). All statistical tests were 2-sided. Results Statistically significant clinical associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain. Some single nucleotide polymorphisms had some degree of association (P\,<\,.001) with the different fatigue endpoints, although there were no genome-wide statistically significant (P\,<\,5.00 \texttimes 10-8) associations. Only for Cognitive Fatigue, the predictive ability of the genomic multivariable model was statistically significantly better than random (area under the curve = 0.59, P\,=\,.01) and marginally improved with clinical variables (area under the curve\,=\,0.60, P\,=\,.005). Single nucleotide polymorphisms found to be associated (P\,<\,.001) with Cognitive Fatigue belonged to genes linked to inflammation (false discovery rate adjusted P\,=\,.03), cognitive disorders (P\,=\,1.51 \texttimes 10-12), and synaptic transmission (P\,=\,6.28 \texttimes 10-8). Conclusions Genomic analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that warrants further exploration. |
---|---|
AbstractList | Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher than quartile 3 at 1\,year after primary treatment completion on European Organization for Research and Treatment of Cancer quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants. Then, using preselected clinical (false discovery rate < 0.05) and genomic (P\,<\,.001) variables, a multivariable preconditioned random-forest regression model was built and validated on a hold-out subset to predict fatigue. Gene set enrichment analysis identified key biological correlates (MetaCore). All statistical tests were 2-sided. Results Statistically significant clinical associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain. Some single nucleotide polymorphisms had some degree of association (P\,<\,.001) with the different fatigue endpoints, although there were no genome-wide statistically significant (P\,<\,5.00 \texttimes 10-8) associations. Only for Cognitive Fatigue, the predictive ability of the genomic multivariable model was statistically significantly better than random (area under the curve = 0.59, P\,=\,.01) and marginally improved with clinical variables (area under the curve\,=\,0.60, P\,=\,.005). Single nucleotide polymorphisms found to be associated (P\,<\,.001) with Cognitive Fatigue belonged to genes linked to inflammation (false discovery rate adjusted P\,=\,.03), cognitive disorders (P\,=\,1.51 \texttimes 10-12), and synaptic transmission (P\,=\,6.28 \texttimes 10-8). Conclusions Genomic analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that warrants further exploration. |
Author | Menvielle, Gwenn Tredan, Olivier Vaz-Luis, Ines Lee, Sangkyu Di Meglio, Antonio Besse, Celine Ganz, Patricia A Dumas, Agnès Charles, Cecile Cottu, Paul Andre, Fabrice Deleuze, Jean-François Martin, Anne-Laure Deasy, Joseph O Partridge, Ann H Everhard, Sibille Rousseau, Marina Boland, Anne Michiels, Stefan Oh, Jung Hun Boyault, Sandrine Thomas, Emilie Levy, Christelle |
Author_xml | – sequence: 1 givenname: Sangkyu surname: Lee fullname: Lee, Sangkyu organization: Memorial Sloan Kettering Cancer Center – sequence: 2 givenname: Joseph O surname: Deasy fullname: Deasy, Joseph O organization: Memorial Sloan Kettering Cancer Center – sequence: 3 givenname: Jung Hun surname: Oh fullname: Oh, Jung Hun organization: Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: Antonio surname: Di Meglio fullname: Di Meglio, Antonio organization: Institut Gustave Roussy – sequence: 5 givenname: Agnès orcidid: 0000-0001-7948-6952 surname: Dumas fullname: Dumas, Agnès organization: Centre de recherche en épidémiologie et santé des populations – sequence: 6 givenname: Gwenn orcidid: 0000-0002-3261-6366 surname: Menvielle fullname: Menvielle, Gwenn organization: Institut Pierre Louis d'Epidémiologie et de Santé Publique – sequence: 7 givenname: Cecile surname: Charles fullname: Charles, Cecile organization: Institut Gustave Roussy – sequence: 8 givenname: Sandrine surname: Boyault fullname: Boyault, Sandrine organization: Centre Léon Bérard [Lyon] – sequence: 9 givenname: Marina surname: Rousseau fullname: Rousseau, Marina organization: Centre Léon Bérard [Lyon] – sequence: 10 givenname: Celine surname: Besse fullname: Besse, Celine organization: Centre National de Recherche en Génomique Humaine – sequence: 11 givenname: Emilie surname: Thomas fullname: Thomas, Emilie organization: Centre Léon Bérard [Lyon] – sequence: 12 givenname: Anne surname: Boland fullname: Boland, Anne organization: Centre National de Recherche en Génomique Humaine – sequence: 13 givenname: Paul orcidid: 0000-0001-6434-3932 surname: Cottu fullname: Cottu, Paul organization: Institut Curie [Paris] – sequence: 14 givenname: Olivier surname: Tredan fullname: Tredan, Olivier organization: Centre Léon Bérard [Lyon] – sequence: 15 givenname: Christelle orcidid: 0000-0003-0572-5222 surname: Levy fullname: Levy, Christelle organization: Centre Régional de Lutte contre le Cancer François Baclesse [Caen] – sequence: 16 givenname: Anne-Laure surname: Martin fullname: Martin, Anne-Laure organization: UNICANCER – sequence: 17 givenname: Sibille surname: Everhard fullname: Everhard, Sibille organization: UNICANCER – sequence: 18 givenname: Patricia A surname: Ganz fullname: Ganz, Patricia A organization: University of California [Los Angeles] – sequence: 19 givenname: Ann H surname: Partridge fullname: Partridge, Ann H organization: Dana-Farber Cancer Institute [Boston] – sequence: 20 givenname: Stefan orcidid: 0000-0002-6963-2968 surname: Michiels fullname: Michiels, Stefan organization: Centre de recherche en épidémiologie et santé des populations – sequence: 21 givenname: Jean-François surname: Deleuze fullname: Deleuze, Jean-François organization: Centre National de Recherche en Génomique Humaine – sequence: 22 givenname: Fabrice surname: Andre fullname: Andre, Fabrice organization: Prédicteurs moléculaires et nouvelles cibles en oncologie – sequence: 23 givenname: Ines surname: Vaz-Luis fullname: Vaz-Luis, Ines organization: Prédicteurs moléculaires et nouvelles cibles en oncologie |
BackLink | https://hal.sorbonne-universite.fr/hal-03833310$$DView record in HAL |
BookMark | eNqVjUFPAjEQhRujEVSunufqYaW1LqFHRBETTDxgvJhsxu7ADrJT0hYi_14x_gEv7-V7-ZJ3po4lCCl1afS10c72V-LZp_7mE1Fbd6S6N6Upi1I701G9lFZaa-OcK93gVHWsvXV6OLBdtXuJVLPPHATCAu4iYcowRvEUYf5DuSXJ75m-MkmNqXmSeuuphglmXm4JPvbwjL5hIZgRRmFZwms65CNJaKl445pglFLwjL8395jxQp0scJ2o99fn6mryMB9PiwbX1SZyi3FfBeRqOppVh03bobXW6J2x_3G_AVdGWsI |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DOI | 10.1093/jncics/pkaa039 |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2515-5091 |
ExternalDocumentID | oai_HAL_hal_03833310v1 |
GroupedDBID | 0R~ 1XC 53G AAFWJ AAPPN AAPXW AAVAP ABPTD ABXVV ACGFS ADBBV AENZO AFULF ALMA_UNASSIGNED_HOLDINGS AOIJS BAYMD BCNDV BTTYL EBS EMOBN GROUPED_DOAJ HYE IAO ITC KSI ML0 OK1 ROX RPM TJX TOX VOOES |
ID | FETCH-hal_primary_oai_HAL_hal_03833310v13 |
IngestDate | Tue Oct 15 16:04:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-hal_primary_oai_HAL_hal_03833310v13 |
Notes | PMCID: PMC7583150 |
ORCID | 0000-0003-0572-5222 0000-0002-3261-6366 0000-0001-6434-3932 0000-0001-7948-6952 0000-0002-6963-2968 0000-0002-3261-6366 0000-0002-6963-2968 0000-0001-6434-3932 0000-0001-7948-6952 0000-0003-0572-5222 |
OpenAccessLink | http://dx.doi.org/10.1093/jncics/pkaa039 |
PMID | 33490863 |
ParticipantIDs | hal_primary_oai_HAL_hal_03833310v1 |
PublicationCentury | 2000 |
PublicationDate | 2020-10 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10 |
PublicationDecade | 2020 |
PublicationTitle | JNCI cancer spectrum |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0001999596 |
Score | 4.3511934 |
Snippet | Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We... |
SourceID | hal |
SourceType | Open Access Repository |
SubjectTerms | Life Sciences |
Title | Prediction of Breast Cancer Treatment\textendashInduced Fatigue by Machine Learning Using Genome-Wide Association Data |
URI | https://hal.sorbonne-universite.fr/hal-03833310 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZTsJAFJ0QTAwvRqPGlUyMPpimUukCPCKIRdkSMPJgQtoyUERagoUE_8y_885MNyJxe2lIS6ZT7sntuXfOHBA6NxQZygpZEUnWGogKlBCiqZqaaMl9eN1aWl5jfch6Q9Mflfuu2k0kPmKqpblnXlnva_eV_CeqcA7iSnfJ_iGy4aBwAj5DfOEIEYbjr2LcmtFlloDz3VB9uSeUaBxnQidQkF-oJY-3uo03m_5TB13xr8AIwzmh5LPO5JQkcFodClxFcEccd0LEp1GfxGMIMPGMFUbbKFWpdIzek23bDMwdIpVP23CG4-U85MwwzWW0-iA0w0avzfeJwN31eQja8kiok-HryPW9DiAJufFeBRSmgerN-24PJH8VsZwHbEsVKYeJJ2glhkN1bdrnllgvjsXEVZXp2DAk7pEUQ8F0wmAgy3St08-qK_7berHda5UrvVq18bB6NTTi1ou1ng04kaCwl4EZL6Dw3shCjqNqwk6zG7X3CtTITQttQuUMn13Gn1sKbQYTAVZjB118xmo622jLL0dwkWNrByWIs4sWEa6wO8AcV5jjCoe4ev6CKuyjCptL7KMKB6jCDFU4hiocQxWmqNpDl5XbTkkX6aNPuQtKb_3PIe-jpOM65ABhVbomTKWck0xFUnJGX81Z8LxAoLMFw8oforOfxzv6zZeOUSpC2wlKAtLJKXBFz0yzHkuaxeYT2VR1OA |
link.rule.ids | 230,315,783,787,867,888,27938,27939 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Breast+Cancer+Treatment%5CtextendashInduced+Fatigue+by+Machine+Learning+Using+Genome-Wide+Association+Data&rft.jtitle=JNCI+cancer+spectrum&rft.au=Lee%2C+Sangkyu&rft.au=Deasy%2C+Joseph+O&rft.au=Oh%2C+Jung+Hun&rft.au=Di+Meglio%2C+Antonio&rft.date=2020-10-01&rft.pub=Oxford+University+Press&rft.eissn=2515-5091&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1093%2Fjncics%2Fpkaa039&rft_id=info%3Apmid%2F33490863&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03833310v1 |