Asymptotically preserving particle methods for strongly magnetizedplasmas in a torus

We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the time step can be subject to stability constraints related to the smallness of Larmor radius. To avoid this limitation, our approach is based...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 480
Main Authors Filbet, Francis, Rodrigues, Luis Miguel Miguel
Format Journal Article
LanguageEnglish
Published Elsevier 14.05.2023
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2023.112015

Cover

Abstract We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the time step can be subject to stability constraints related to the smallness of Larmor radius. To avoid this limitation, our approach is based on higher-order semi-implicit numerical schemes already validated on dissipative systems [3] and for magnetic fields pointing in a fixed direction [9, 10, 12]. It hinges on asymptotic insights gained in [11] at the continuous level. Thus, when the magnitude of the external magnetic field is large, this scheme provides a consistent approximation of the guiding-center system taking into account curvature and variation of the magnetic field. Finally, we carry out a theoretical proof of consistency and perform several numerical experiments that establish a solid validation of the method and its underlying concepts.
AbstractList We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the time step can be subject to stability constraints related to the smallness of Larmor radius. To avoid this limitation, our approach is based on higher-order semi-implicit numerical schemes already validated on dissipative systems [3] and for magnetic fields pointing in a fixed direction [9, 10, 12]. It hinges on asymptotic insights gained in [11] at the continuous level. Thus, when the magnitude of the external magnetic field is large, this scheme provides a consistent approximation of the guiding-center system taking into account curvature and variation of the magnetic field. Finally, we carry out a theoretical proof of consistency and perform several numerical experiments that establish a solid validation of the method and its underlying concepts.
Author Filbet, Francis
Rodrigues, Luis Miguel Miguel
Author_xml – sequence: 1
  givenname: Francis
  orcidid: 0000-0002-2975-4450
  surname: Filbet
  fullname: Filbet, Francis
  organization: Institut de Mathématiques de Toulouse UMR5219
– sequence: 2
  givenname: Luis Miguel
  surname: Rodrigues
  middlename: Miguel
  fullname: Rodrigues, Luis Miguel Miguel
  organization: Institut de Recherche Mathématique de Rennes
BackLink https://hal.science/hal-03777588$$DView record in HAL
BookMark eNqVyr1qwzAUQGERUojT9gG6ae1g9165ju0xlJYMHbObS6I4MvpDVwk4T98U-gKdDnyctVj64LUQLwgVAm7epmo6xEqBqitEBdgsRIHQQ6la3CxFAaCw7PseV2LNPAFA17x3hdhveXYxh2wOZO0sY9Ks09X4UUZKd7VaOp3P4cjyFJLknIIf76Oj0etsbvoYLbEjlsZLkjmkCz-JhxNZ1s9_fRSvX5_7j115JjvEZByleQhkht32e_g1qNu2bbruqur_vD_ngk7D
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1016/j.jcp.2023.112015
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1090-2716
ExternalDocumentID oai_HAL_hal_03777588v2
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1XC
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSQ
SSV
SSZ
T5K
TN5
UPT
VOOES
YQT
ZMT
ZU3
~02
~G-
ID FETCH-hal_primary_oai_HAL_hal_03777588v23
ISSN 0021-9991
IngestDate Fri May 09 12:19:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_03777588v23
ORCID 0000-0002-2975-4450
0000-0002-2975-4450
OpenAccessLink https://hal.science/hal-03777588
ParticipantIDs hal_primary_oai_HAL_hal_03777588v2
PublicationCentury 2000
PublicationDate 2023-05-14
PublicationDateYYYYMMDD 2023-05-14
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-14
  day: 14
PublicationDecade 2020
PublicationTitle Journal of computational physics
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0008548
Score 4.831945
Snippet We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the...
SourceID hal
SourceType Open Access Repository
SubjectTerms Mathematics
Numerical Analysis
Title Asymptotically preserving particle methods for strongly magnetizedplasmas in a torus
URI https://hal.science/hal-03777588
Volume 480
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4YvOjBB2p8Z2O8GFPSdlvbHolKUIGYiAk30scCJVAaWkzk4G939lEKQiJ6aaFsmtJvMjv77XwzCF37BrFtSojiOoapwIxnK7bha4ppe0ZgBo7m8azKeuOu-m48t8xWnsrL1SWpV_KnK3Ul_0EVrgGuTCX7B2RnN4UL8BnwhSMgDMe1MC4nn8M4HXE6mrEUTEo05gxBLEfLDtG86ALThYyiLgwcut2IpuGUBjEEz0OX58S6EIaOJQ2wHK36vPtDxhwKPiSXjoQDuakh-3Tk2zgBrP4nwhXVJmFyW2dfB_I0TznoPMFPyynHTAsz71dZoocj-m6VqHClqqMquiWUlJmvNUTbpiW_LSiEfqnvsxqiOmHKJlXoPBdrZFfLb-3Xh0q79tR4Wfx1Viy7Wq61e4ClSiwLVkP2B8zQm7pl8V380leeAWSbhpio5cNnm948_e_Hk0Do0cuodh56NPfQjkQBlwWk-2iDRkW0K9cPWHrnpIi267MavMkBai5aB86tA2fWgaV1YLAOnFkHXrIOHEbYxdw6DtFN5bF5X1XYX49FpZL26tdBjlAhGkX0GGHVdglhnecYmdWxNFej1Oy4luaZaoc45ARd_X6_03UGnaGt3JTOUSEdT-gFxHOpd8lR-QaYwFTQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotically+preserving+particle+methods+for+strongly+magnetizedplasmas+in+a+torus&rft.jtitle=Journal+of+computational+physics&rft.au=Filbet%2C+Francis&rft.au=Rodrigues%2C+Luis+Miguel+Miguel&rft.date=2023-05-14&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=480&rft_id=info:doi/10.1016%2Fj.jcp.2023.112015&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03777588v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon