Semi-parametric estimation of the variogram of a Gaussian process with stationary increments
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with...
Saved in:
Published in | ESAIM. Proceedings and surveys no. 24; pp. 842 - 882 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure. |
---|---|
AbstractList | We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure. |
Author | Lagnoux, Agnès Azaïs, Jean-Marc Nguyen, Thi Mong Ngoc Bachoc, François |
Author_xml | – sequence: 1 givenname: Jean-Marc surname: Azaïs fullname: Azaïs, Jean-Marc organization: Institut de Mathématiques de Toulouse UMR5219 – sequence: 2 givenname: François surname: Bachoc fullname: Bachoc, François organization: Institut de Mathématiques de Toulouse UMR5219 – sequence: 3 givenname: Agnès orcidid: 0000-0002-6841-5814 surname: Lagnoux fullname: Lagnoux, Agnès organization: Institut de Mathématiques de Toulouse UMR5219 – sequence: 4 givenname: Thi Mong Ngoc surname: Nguyen fullname: Nguyen, Thi Mong Ngoc organization: Vietnam National University, Ho Chi Minh City / Đại học Quốc gia TP. Hồ Chí Minh |
BackLink | https://hal.science/hal-01802830$$DView record in HAL |
BookMark | eNqVjT0LwkAQRA9R8Cv_YVuLwJnEqKWImsJOSyEsYTUryV24PRX_vUYsbK1meLxhhqprrKGOGkRROg9jPVt2f3pfBSJXrfU0madpshyo04FqDht0WJN3XACJ5xo9WwP2DL4kuKNje3kLLUDY4U2E0UDjbEEi8GBfgvjPBt0T2BSOajJexqp3xkoo-OZITbab4zoLS6zyxr1_3DO3yHm22uct09OFjhaxvsfxP-4L1sNLtQ |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 2267-3059 |
EndPage | 882 |
ExternalDocumentID | oai_HAL_hal_01802830v3 |
GroupedDBID | 1XC 3V. 8FE 8FG AAFWJ ABJCF ABUWG ACACO ACIWK AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU DWQXO EBS EJD GI~ GNUQQ GROUPED_DOAJ HCIFZ K6V K7- L6V M0N M7S M~E OK1 PIMPY PQQKQ PROAC PTHSS RED VOOES |
ID | FETCH-hal_primary_oai_HAL_hal_01802830v33 |
ISSN | 2267-3059 |
IngestDate | Mon Nov 11 06:38:01 EST 2024 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | asymptotic normality scale covariance parameter moment method aggregation of estimators quadratic variations |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-hal_primary_oai_HAL_hal_01802830v33 |
ORCID | 0000-0002-6841-5814 0000-0002-6841-5814 |
OpenAccessLink | https://hal.science/hal-01802830 |
ParticipantIDs | hal_primary_oai_HAL_hal_01802830v3 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | ESAIM. Proceedings and surveys |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
SSID | ssj0001476649 |
Score | 4.2891583 |
Snippet | We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on... |
SourceID | hal |
SourceType | Open Access Repository |
StartPage | 842 |
SubjectTerms | Mathematics Statistics |
Title | Semi-parametric estimation of the variogram of a Gaussian process with stationary increments |
URI | https://hal.science/hal-01802830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QT3gwihrf2RgvxtRg3x4bEUGBkICJBxOyLVvogUKEksjBu__amd12i4ZE9NI0u23Tdr7Oa2e-EnIRug4zQoNpgaNzCFBMrt26lq_d3PSZyxwwGn1sTm627Nqz-fhivRQKn0tVS8nMvw4WK_tK_iNVGAO5YpfsHySrLgoDsA_yhS1IGLZrybjDR5GG5N0j_C9WcIWMGSPlA6JLOYdQWBRgyT7IB5ZMRdfkRPYHpBXqcjke6-eiOJAJw-m3lH3HqzevZVOBMHaS2HmavM0BCAozCyaW3atpixiLtSZ8RnmuFDRtkDnL4khnHKmzG1jylwhT6A3ktKsmW4PkXerH7jBCPTS4ag3GwXLKQi_nGbRKO9NZS6lI8ABB0ZVTZnC-YkxiUDeXNK0rSbkyo-3quUHLFvFrXqfXrlR7jXrr6fusItaueY3eEOSONGZIhTZH3lgTFB22jdc_8myd6di2iKXUjYEzMsyS78IZ6W6TrTSKoJ6ExA4p8LhENpuKgndaIkUMIyQL9y55_YEUmiOFjkMKp1GFFBxgNEMKTZFCESk0RwrNkbJHLqv33buaho84kewlvdWPbeyTjXgc8wNCDfT6bcsKHfvWdA2fsTLTHYvbocn7pm8dkvPfr3e0zkHHpIjwkBmtE7Ixe0v4Kfh4M_9MvP4vAMZduQ |
link.rule.ids | 230,315,783,787,888,4031 |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-parametric+estimation+of+the+variogram+of+a+Gaussian+process+with+stationary+increments&rft.jtitle=ESAIM.+Proceedings+and+surveys&rft.au=Aza%C3%AFs%2C+Jean-Marc&rft.au=Bachoc%2C+Fran%C3%A7ois&rft.au=Lagnoux%2C+Agn%C3%A8s&rft.au=Nguyen%2C+Thi+Mong+Ngoc&rft.date=2020&rft.pub=EDP+Sciences&rft.issn=2267-3059&rft.eissn=2267-3059&rft.issue=24&rft.spage=842&rft.epage=882&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01802830v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-3059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-3059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-3059&client=summon |