Semi-parametric estimation of the variogram of a Gaussian process with stationary increments

We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with...

Full description

Saved in:
Bibliographic Details
Published inESAIM. Proceedings and surveys no. 24; pp. 842 - 882
Main Authors Azaïs, Jean-Marc, Bachoc, François, Lagnoux, Agnès, Nguyen, Thi Mong Ngoc
Format Journal Article
LanguageEnglish
Published EDP Sciences 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
AbstractList We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
Author Lagnoux, Agnès
Azaïs, Jean-Marc
Nguyen, Thi Mong Ngoc
Bachoc, François
Author_xml – sequence: 1
  givenname: Jean-Marc
  surname: Azaïs
  fullname: Azaïs, Jean-Marc
  organization: Institut de Mathématiques de Toulouse UMR5219
– sequence: 2
  givenname: François
  surname: Bachoc
  fullname: Bachoc, François
  organization: Institut de Mathématiques de Toulouse UMR5219
– sequence: 3
  givenname: Agnès
  orcidid: 0000-0002-6841-5814
  surname: Lagnoux
  fullname: Lagnoux, Agnès
  organization: Institut de Mathématiques de Toulouse UMR5219
– sequence: 4
  givenname: Thi Mong Ngoc
  surname: Nguyen
  fullname: Nguyen, Thi Mong Ngoc
  organization: Vietnam National University, Ho Chi Minh City / Đại học Quốc gia TP. Hồ Chí Minh
BackLink https://hal.science/hal-01802830$$DView record in HAL
BookMark eNqVjT0LwkAQRA9R8Cv_YVuLwJnEqKWImsJOSyEsYTUryV24PRX_vUYsbK1meLxhhqprrKGOGkRROg9jPVt2f3pfBSJXrfU0madpshyo04FqDht0WJN3XACJ5xo9WwP2DL4kuKNje3kLLUDY4U2E0UDjbEEi8GBfgvjPBt0T2BSOajJexqp3xkoo-OZITbab4zoLS6zyxr1_3DO3yHm22uct09OFjhaxvsfxP-4L1sNLtQ
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 2267-3059
EndPage 882
ExternalDocumentID oai_HAL_hal_01802830v3
GroupedDBID 1XC
3V.
8FE
8FG
AAFWJ
ABJCF
ABUWG
ACACO
ACIWK
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EBS
EJD
GI~
GNUQQ
GROUPED_DOAJ
HCIFZ
K6V
K7-
L6V
M0N
M7S
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RED
VOOES
ID FETCH-hal_primary_oai_HAL_hal_01802830v33
ISSN 2267-3059
IngestDate Mon Nov 11 06:38:01 EST 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords asymptotic normality
scale covariance parameter
moment method
aggregation of estimators
quadratic variations
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_01802830v33
ORCID 0000-0002-6841-5814
0000-0002-6841-5814
OpenAccessLink https://hal.science/hal-01802830
ParticipantIDs hal_primary_oai_HAL_hal_01802830v3
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle ESAIM. Proceedings and surveys
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
SSID ssj0001476649
Score 4.2891583
Snippet We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on...
SourceID hal
SourceType Open Access Repository
StartPage 842
SubjectTerms Mathematics
Statistics
Title Semi-parametric estimation of the variogram of a Gaussian process with stationary increments
URI https://hal.science/hal-01802830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QT3gwihrf2RgvxtRg3x4bEUGBkICJBxOyLVvogUKEksjBu__amd12i4ZE9NI0u23Tdr7Oa2e-EnIRug4zQoNpgaNzCFBMrt26lq_d3PSZyxwwGn1sTm627Nqz-fhivRQKn0tVS8nMvw4WK_tK_iNVGAO5YpfsHySrLgoDsA_yhS1IGLZrybjDR5GG5N0j_C9WcIWMGSPlA6JLOYdQWBRgyT7IB5ZMRdfkRPYHpBXqcjke6-eiOJAJw-m3lH3HqzevZVOBMHaS2HmavM0BCAozCyaW3atpixiLtSZ8RnmuFDRtkDnL4khnHKmzG1jylwhT6A3ktKsmW4PkXerH7jBCPTS4ag3GwXLKQi_nGbRKO9NZS6lI8ABB0ZVTZnC-YkxiUDeXNK0rSbkyo-3quUHLFvFrXqfXrlR7jXrr6fusItaueY3eEOSONGZIhTZH3lgTFB22jdc_8myd6di2iKXUjYEzMsyS78IZ6W6TrTSKoJ6ExA4p8LhENpuKgndaIkUMIyQL9y55_YEUmiOFjkMKp1GFFBxgNEMKTZFCESk0RwrNkbJHLqv33buaho84kewlvdWPbeyTjXgc8wNCDfT6bcsKHfvWdA2fsTLTHYvbocn7pm8dkvPfr3e0zkHHpIjwkBmtE7Ixe0v4Kfh4M_9MvP4vAMZduQ
link.rule.ids 230,315,783,787,888,4031
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-parametric+estimation+of+the+variogram+of+a+Gaussian+process+with+stationary+increments&rft.jtitle=ESAIM.+Proceedings+and+surveys&rft.au=Aza%C3%AFs%2C+Jean-Marc&rft.au=Bachoc%2C+Fran%C3%A7ois&rft.au=Lagnoux%2C+Agn%C3%A8s&rft.au=Nguyen%2C+Thi+Mong+Ngoc&rft.date=2020&rft.pub=EDP+Sciences&rft.issn=2267-3059&rft.eissn=2267-3059&rft.issue=24&rft.spage=842&rft.epage=882&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01802830v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-3059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-3059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-3059&client=summon