Reciprocal classes of random walks on graphs

The reciprocal class of a Markov path measure is the set of all mixtures of its bridges. We give characterizations of the reciprocal class of a continuous-time Markov random walk on a graph. Our main result is in terms of some reciprocal characteristics whose expression only depends on the jump inte...

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 27; no. 6; pp. 1870 - 1896
Main Authors Conforti, Giovanni, Léonard, Christian
Format Journal Article
LanguageEnglish
Published Elsevier 2017
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X

Cover

Abstract The reciprocal class of a Markov path measure is the set of all mixtures of its bridges. We give characterizations of the reciprocal class of a continuous-time Markov random walk on a graph. Our main result is in terms of some reciprocal characteristics whose expression only depends on the jump intensity. We also characterize the reciprocal class by means of Taylor expansions in small time of some conditional probabilities. Our measure-theoretical approach allows to extend significantly already known results on the subject. The abstract results are illustrated by several examples.
AbstractList The reciprocal class of a Markov path measure is the set of all mixtures of its bridges. We give characterizations of the reciprocal class of a continuous-time Markov random walk on a graph. Our main result is in terms of some reciprocal characteristics whose expression only depends on the jump intensity. We also characterize the reciprocal class by means of Taylor expansions in small time of some conditional probabilities. Our measure-theoretical approach allows to extend significantly already known results on the subject. The abstract results are illustrated by several examples.
Author Conforti, Giovanni
Léonard, Christian
Author_xml – sequence: 1
  givenname: Giovanni
  surname: Conforti
  fullname: Conforti, Giovanni
  organization: Institut für Mathematik [Potsdam]
– sequence: 2
  givenname: Christian
  surname: Léonard
  fullname: Léonard, Christian
  organization: Modélisation aléatoire de Paris X
BackLink https://hal.science/hal-01273085$$DView record in HAL
BookMark eNrjYmDJy89LZWLgNLQwt9Q1MrCMYGHgNDA2MNE1MTSx5GDgKi7OMjAwMDQyMuRk0AlKTc4sKMpPTsxRSM5JLC5OLVbIT1MoSsxLyc9VKE_MyQby8xTSixILMop5GFjTEnOKU3mhNDeDpptriLOHbkZiTnxBUWZuYlFlfH5iZryHo088SAxoibmxgYVpmaExKWoBNX44dA
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-209X
EndPage 1896
ExternalDocumentID oai_HAL_hal_01273085v1
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1XC
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
VOOES
WH7
WUQ
XPP
ZMT
~G-
ID FETCH-hal_primary_oai_HAL_hal_01273085v13
ISSN 0304-4149
IngestDate Sat Sep 06 12:46:46 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_01273085v13
OpenAccessLink https://hal.science/hal-01273085
ParticipantIDs hal_primary_oai_HAL_hal_01273085v1
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Stochastic processes and their applications
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0001221
Score 4.2173347
Snippet The reciprocal class of a Markov path measure is the set of all mixtures of its bridges. We give characterizations of the reciprocal class of a continuous-time...
SourceID hal
SourceType Open Access Repository
StartPage 1870
SubjectTerms Mathematics
Probability
Title Reciprocal classes of random walks on graphs
URI https://hal.science/hal-01273085
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz2IT3yziBepKUmT5nGsj5pqW4RW6C00yYaWalLaqOCvdyaTrBEKVi9L2ISw5AszX3bm-8LYhW8JPbJUWzGB3CpGZArFDqxQ8Z3QCUaRCTkD9c7dnuk-Gw_DxrD4m32uLkn9WvC5VFfyH1RhDnBFlewfkJU3hQk4BnxhBIRhXAlj4HwTzEDo8YEsmAxkIfuEyWv1Y_QyzWoBmSf1osxC-2kSjEfo0FydkVBALIpWysm8Wi5qyxpFgrolqv3fYwNrHE9kMw9V24HTU588GRYU712-pUDaSdrhytNxKQjpqqEYGtmK1gQFSdtyAIfsF7gyipLCP39byiERrlZL6VWznSXW126z7z3dtrxOu_f486z0wHabHW8MEGGtXAei-I7fvECvsI-vPbyW6VerZ2I7uXAgDeNikzwjDYMttpmzfd4k6LbZmoh32EZXWuUudtnVN4g8B5EnEScQeQYiT2JOIO6xy9bd4MZVcIkzMgrxli9b32eVOInFAeOGQP5rWVisNAzHtMOGGtQDNQwbgRZF4SE7__1-R6tcdMzWEWnaPDphlXT-Jk6BTqX-Wfb4vgDyiysH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reciprocal+classes+of+random+walks+on+graphs&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Conforti%2C+Giovanni&rft.au=L%C3%A9onard%2C+Christian&rft.date=2017&rft.pub=Elsevier&rft.issn=0304-4149&rft.eissn=1879-209X&rft.volume=27&rft.issue=6&rft.spage=1870&rft.epage=1896&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01273085v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon