Modification of pancreatic lipase properties by directed molecular evolution

Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pa...

Full description

Saved in:
Bibliographic Details
Published inProtein Engineering Design and Selection 5 (23), 365-373. (2010)
Main Authors Colin, Damien, Deprez, Paule, Silva, Noella, Infantes, Lourdes, Kerfelec, Brigitte
Format Publication
LanguageEnglish
Published 2010
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by ∼50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity
Bibliography:http://prodinra.inra.fr/record/48108
http://prodinra.inra.fr/ft/3BAF45EE-9C69-4F3C-99AA-D52668354A51
10.1093/protein/gzq008