Determination of amino acid content in tea infusion using NIR spectroscopy combined with characteristic variables selection methods

采用透射方式获取茶汤的近红外光谱, 利用特征变量筛选方法从茶汤的近红外光谱中提取氨基酸光谱信息, 建立茶汤中氨基酸含量的快速检测模型。分别利用间隔偏最小二乘法 (iPLS)和联合区间偏最小二乘法 (siPLS)从茶汤的近红外光谱中提取微弱的氨基酸信息, 建立其近红外光谱定量分析模型。结果表明,利用两种方法筛选的特征变量都避开了水的强吸收峰影响, 但利用siPLS方法建立的模型性能明显好于iPLS的。最优的siPLS模型对校正集样本的相关系数为0.912, 交互验证均方根误差为0.185; 用预测集中独立样本检验模型性能, 其相关系数为0.887, 预测均方根误差为0.202。研究结果可为液体茶...

Full description

Saved in:
Bibliographic Details
Published inJiangxi nongye daxue xuebao = Acta agriculturae universitatis jiangxiensis Vol. 34; no. 5
Main Authors Wu Yanhong, Jiangxi Agricultural University, Nanchang (China), College of Engineering, Ai Shirong, Jiangxi Agricultural University, Nanchang (China), College of Software, Yan Linyuan, Jiangxi Agricultural University, Nanchang (China), College of Engineering
Format Journal Article
LanguageChinese
Published 01.10.2012
Subjects
Online AccessGet more information

Cover

Loading…
Abstract 采用透射方式获取茶汤的近红外光谱, 利用特征变量筛选方法从茶汤的近红外光谱中提取氨基酸光谱信息, 建立茶汤中氨基酸含量的快速检测模型。分别利用间隔偏最小二乘法 (iPLS)和联合区间偏最小二乘法 (siPLS)从茶汤的近红外光谱中提取微弱的氨基酸信息, 建立其近红外光谱定量分析模型。结果表明,利用两种方法筛选的特征变量都避开了水的强吸收峰影响, 但利用siPLS方法建立的模型性能明显好于iPLS的。最优的siPLS模型对校正集样本的相关系数为0.912, 交互验证均方根误差为0.185; 用预测集中独立样本检验模型性能, 其相关系数为0.887, 预测均方根误差为0.202。研究结果可为液体茶饮料中的成分实时快速检测提供参考。 The objective of this study was to evaluate the capacity of NIR spectroscopy to rapidly predict the content of amino acid in tea infusion. Transmission mode was used to attain NIR spectroscopy of tea infusion. Interval partial least square (iPLS) and synergy interval partial least square (siPLS) were applied to select the feeble amino acid information from NIR spectroscopy of tea infusion in this study. The optimized characteristic variables were used to develop PLS models. The results show that the selected feature variables based on iPLS and siPLS were not within the range of the strong Absorbance for water, but the built model using siPLS had better performance than that of iPLS. The optimal si
AbstractList 采用透射方式获取茶汤的近红外光谱, 利用特征变量筛选方法从茶汤的近红外光谱中提取氨基酸光谱信息, 建立茶汤中氨基酸含量的快速检测模型。分别利用间隔偏最小二乘法 (iPLS)和联合区间偏最小二乘法 (siPLS)从茶汤的近红外光谱中提取微弱的氨基酸信息, 建立其近红外光谱定量分析模型。结果表明,利用两种方法筛选的特征变量都避开了水的强吸收峰影响, 但利用siPLS方法建立的模型性能明显好于iPLS的。最优的siPLS模型对校正集样本的相关系数为0.912, 交互验证均方根误差为0.185; 用预测集中独立样本检验模型性能, 其相关系数为0.887, 预测均方根误差为0.202。研究结果可为液体茶饮料中的成分实时快速检测提供参考。 The objective of this study was to evaluate the capacity of NIR spectroscopy to rapidly predict the content of amino acid in tea infusion. Transmission mode was used to attain NIR spectroscopy of tea infusion. Interval partial least square (iPLS) and synergy interval partial least square (siPLS) were applied to select the feeble amino acid information from NIR spectroscopy of tea infusion in this study. The optimized characteristic variables were used to develop PLS models. The results show that the selected feature variables based on iPLS and siPLS were not within the range of the strong Absorbance for water, but the built model using siPLS had better performance than that of iPLS. The optimal si
Author Yan Linyuan, Jiangxi Agricultural University, Nanchang (China), College of Engineering
Wu Yanhong, Jiangxi Agricultural University, Nanchang (China), College of Engineering
Ai Shirong, Jiangxi Agricultural University, Nanchang (China), College of Software
Author_xml – sequence: 1
  fullname: Wu Yanhong, Jiangxi Agricultural University, Nanchang (China), College of Engineering
– sequence: 2
  fullname: Ai Shirong, Jiangxi Agricultural University, Nanchang (China), College of Software
– sequence: 3
  fullname: Yan Linyuan, Jiangxi Agricultural University, Nanchang (China), College of Engineering
BookMark eNqFjsFqw0AMRPeQQtM2nxDQDwQ2a2qac9rSXnIovQd5LccCWwqWktJzfjwb6L0XDWJmHvMQZqJCszBfxxhXKb3U92Fhxk2MKdVVldI8XF7JaRpZ0FkFtAMsjwJmbiGrOIkDCzhhke5kt1S5coDd5xfYkbJPalmPvyU-NizUwg97D7nHCXOBszlnOOPE2AxkYDSU0o0zkvfa2lO463AwWvzpY1i-v31vP1Yd6h4PBbDf7lJcV2V3_bxJ__lXaW9OpQ
ContentType Journal Article
DBID FBQ
DatabaseName AGRIS
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod no_fulltext_linktorsrc
DocumentTitle_FL 近红外光谱结合特征变量筛选方法测定茶汤中的氨基酸含量
ExternalDocumentID CN2013002659
GroupedDBID -04
23M
5GY
5XA
5XE
AFFDO
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
ECGQY
FBQ
U1G
U5N
ID FETCH-fao_agris_CN20130026592
ISSN 1000-2286
IngestDate Tue Nov 07 23:23:43 EST 2023
IsPeerReviewed false
IsScholarly true
Issue 5
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-fao_agris_CN20130026592
Notes 2013002659
Q04
ParticipantIDs fao_agris_CN2013002659
PublicationCentury 2000
PublicationDate Oct. 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: Oct. 2012
PublicationDecade 2010
PublicationTitle Jiangxi nongye daxue xuebao = Acta agriculturae universitatis jiangxiensis
PublicationYear 2012
SSID ssib002263322
ssib051373411
ssib001050174
ssib001101296
ssj0002507615
Score 3.863838
Snippet 采用透射方式获取茶汤的近红外光谱, 利用特征变量筛选方法从茶汤的近红外光谱中提取氨基酸光谱信息, 建立茶汤中氨基酸含量的快速检测模型。分别利用间隔偏最小二乘法 (iPLS)和联合区间偏最小二乘法 (siPLS)从茶汤的近红外光谱中提取微弱的氨基酸信息,...
SourceID fao
SourceType Publisher
SubjectTerms ACIDE AMINE
AMINO ACIDS
AMINOACIDOS
ESPECTROMETRIA
http://www.fao.org/aos/agrovoc#c_342
http://www.fao.org/aos/agrovoc#c_50131
http://www.fao.org/aos/agrovoc#c_7283
http://www.fao.org/aos/agrovoc#c_7634
INFUSION
PERFUSION
SPECTROMETRIE
SPECTROMETRY
TE
TEA
THE
Title Determination of amino acid content in tea infusion using NIR spectroscopy combined with characteristic variables selection methods
Volume 34
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZWduGCQDABY9M7sJNV1DhN3R52KPuhgUQPbIjtNDmJ02aakmltxrrr_vG958aOIw0JEDs0alLVSfv82d97_t4zYx9lnIxk2tddEQ1TdFDCpDvUUncj1Ut7UgZparbp_DYZHP3ofz2NTtc6u55qqVrEn5K7R_NK_sWqeA3tSlmyf2FZ1yhewPdoXzyihfH4Rzbet1oWS_sUnpRcJXlqNOi0zk86RsqGLLKKAmO8MsGByZfv3CRZUjHL8mpJ0nL0kZ0WvVXGmd-gQ00pVnM-N9vmUDurrafnLXKLXW16m_OiLKZLzVN1W2mOr1iVfCfc5-NkobiaXttyH5pXVhZCORb8YvV9ktQ7pv-z4meqmFnhcH2HcdPIpactsdMFBcHN8jRtDr4jRiYa3ERIvBqMrr_n_HhGGX__8TbHOMP9Uo24-Ix2SM6LZbWKOT_Nb6kDOIFwUkA751ByvxB1RfB6UqojvLm37N8uC743EbTojC50NOqwjhzSIH_4ufEFkDjjaOvX-qOYo18bbxCGTe3GKAglMprABSiRG8uB2QHEPSDyr0z5_OvkJXtRO04wXqHgFVu7m71m9y0EQJmBQQAQAqBGAOQFIALAIgAMAgARAD4CwCIACAHQRgA4BIBDANQIeMO2Dg9O9o66-NDn1Lvn5_6_JjbYMwSEfssAaTK6LaqfBCLrR72eiuNIhiONXFZkqYresY3H23j_uw822fPG1h_YeoZDjt5C_rqIt42dHgCdJqf8
link.rule.ids 783
linkProvider FAO Food and Agriculture Organization of the United Nations
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+amino+acid+content+in+tea+infusion+using+NIR+spectroscopy+combined+with+characteristic+variables+selection+methods&rft.jtitle=Jiangxi+nongye+daxue+xuebao+%3D+Acta+agriculturae+universitatis+jiangxiensis&rft.au=Wu+Yanhong%2C+Jiangxi+Agricultural+University%2C+Nanchang+%28China%29%2C+College+of+Engineering&rft.au=Ai+Shirong%2C+Jiangxi+Agricultural+University%2C+Nanchang+%28China%29%2C+College+of+Software&rft.au=Yan+Linyuan%2C+Jiangxi+Agricultural+University%2C+Nanchang+%28China%29%2C+College+of+Engineering&rft.date=2012-10-01&rft.issn=1000-2286&rft.volume=34&rft.issue=5&rft.externalDocID=CN2013002659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2286&client=summon