OPTIMIZING MACHINE LEARNING MODEL PERFORMANCE
Certain aspects of the present disclosure provide techniques for receiving data defining a neural network; analyzing the data to determine a depth-first cut point for a depth-first traversal portion of an overall network traversal; performing depth-first traversal for the depth-first portion of the...
Saved in:
Main Author | |
---|---|
Format | Patent |
Language | English French |
Published |
24.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Certain aspects of the present disclosure provide techniques for receiving data defining a neural network; analyzing the data to determine a depth-first cut point for a depth-first traversal portion of an overall network traversal; performing depth-first traversal for the depth-first portion of the overall network traversal; and performing layer-based traversal for a layer-based portion of the overall network traversal.
Certains aspects de la présente invention concernent des techniques de réception de données définissant un réseau neuronal; d'analyse des données pour déterminer un premier point de coupe de profondeur d'une première partie de traversée de profondeur d'une traversée de réseau globale; de réalisation d'une première traversée de profondeur pour la première partie de profondeur de la traversée de réseau globale; et de réalisation d'une traversée basée sur une couche pour une partie à base de couche de la traversée de réseau globale. |
---|---|
AbstractList | Certain aspects of the present disclosure provide techniques for receiving data defining a neural network; analyzing the data to determine a depth-first cut point for a depth-first traversal portion of an overall network traversal; performing depth-first traversal for the depth-first portion of the overall network traversal; and performing layer-based traversal for a layer-based portion of the overall network traversal.
Certains aspects de la présente invention concernent des techniques de réception de données définissant un réseau neuronal; d'analyse des données pour déterminer un premier point de coupe de profondeur d'une première partie de traversée de profondeur d'une traversée de réseau globale; de réalisation d'une première traversée de profondeur pour la première partie de profondeur de la traversée de réseau globale; et de réalisation d'une traversée basée sur une couche pour une partie à base de couche de la traversée de réseau globale. |
Author | VARIA, Meghal |
Author_xml | – fullname: VARIA, Meghal |
BookMark | eNrjYmDJy89L5WTQ9Q8I8fT1jPL0c1fwdXT28PRzVfBxdQzyAwv4u7j6KAS4Brn5B_k6-jm78jCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-HB_IwMgNDU3NTR3NDQmThUAV1IoMg |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | OPTIMISATION DES PERFORMANCES D'UN MODÈLE D'APPRENTISSAGE MACHINE |
ExternalDocumentID | WO2020257517A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_WO2020257517A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:48:31 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_WO2020257517A13 |
Notes | Application Number: WO2020US38522 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201224&DB=EPODOC&CC=WO&NR=2020257517A1 |
ParticipantIDs | epo_espacenet_WO2020257517A1 |
PublicationCentury | 2000 |
PublicationDate | 20201224 |
PublicationDateYYYYMMDD | 2020-12-24 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201224 day: 24 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | QUALCOMM INCORPORATED |
RelatedCompanies_xml | – name: QUALCOMM INCORPORATED |
Score | 3.307178 |
Snippet | Certain aspects of the present disclosure provide techniques for receiving data defining a neural network; analyzing the data to determine a depth-first cut... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | OPTIMIZING MACHINE LEARNING MODEL PERFORMANCE |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201224&DB=EPODOC&locale=&CC=WO&NR=2020257517A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTqkydUlD6VnRtbbqHIV2a2sn6Qak6fBlt6ECQbtiK_76X0Ome9pgLhLvA5e53XwG4NZ0FGq3c1LkjQjeLwtbRK7J1cl-aaD45sWVVZRjZwYv1PHuYdeBz3Qsj54T-yOGIqFEc9b2R7_XqP4jlydrK-q74QNLy0c9GntaiY0MmijRvPGJJ7MVUoxRxmxalcs8QOQbiIlbaQUeaCH1gr2PRl7LaNCr-EewmeF7VHEOnrBQ4oOu_1xTYD9uUtwJ7skaT10hs9bA-AT1OMnx13ifRkxq6NJhETJ0yN40kIfbYVE1YigAvFH_PnMKNzzIa6MjB_E_g-Vu8ya55Bt1qWZU9UBF_WINBjmLywjLLYWEPLWORO4RwORj_HPrbTrrYvn0Jh2IpijUMqw_d5uu7vEKT2xTX8qZ-Abi2faE |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ409VFvihofVUk03IgWEOihMXRZBOWVBrXxQoBAYmJoIxj_vrMbqj31OpNsZjeZ-ebbmZ0FuFHNCkErU-XCZFc3Va7LmBXpsnFXqgifhaHzrsog1N0X7Wl-P-_B5-otDJ8T-sOHI6JHFejvLY_Xy_9LLJv3Vja3-QeKFg9OMrGljh0rvFAk2dMJjSM7IhIhyNukcMZ1CqsxGBZypS1Msg3mD_R1yt6lLNdBxdmH7RjXq9sD6JW1AAOy-ntNgN2gK3kLsMN7NIsGhZ0fNocgR3GCUefdCx_FwCKuF1LRp9Ys5ILIpr4Y0xkSvID9PXME1w5NiCujBenfhtO3aN1c9Rj69aIuT0BE_qGNRhlus8g1tRzn-lhTqsw0jIIPxj-F4aaVzjarr2DgJoGf-l74fA57TMUaNxRtCP3267u8QPht80t-ar_IyICU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=OPTIMIZING+MACHINE+LEARNING+MODEL+PERFORMANCE&rft.inventor=VARIA%2C+Meghal&rft.date=2020-12-24&rft.externalDBID=A1&rft.externalDocID=WO2020257517A1 |