TRAINING A DEEP NEURAL NETWORK MODEL TO GENERATE RICH OBJECT-CENTRIC EMBEDDINGS OF ROBOTIC VISION DATA
Training a machine learning model (e.g., a neural network model such as a convolutional neural network (CNN) model) so that, when trained, the model can be utilized in processing vision data (e.g., from a vision component of a robot), that captures an object, to generate a rich object-centric embedd...
Saved in:
Main Authors | , , , , |
---|---|
Format | Patent |
Language | English French |
Published |
02.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Training a machine learning model (e.g., a neural network model such as a convolutional neural network (CNN) model) so that, when trained, the model can be utilized in processing vision data (e.g., from a vision component of a robot), that captures an object, to generate a rich object-centric embedding for the vision data. The generated embedding can enable differentiation of even subtle variations of attributes of the object captured by the vision data.
L'invention concerne l'entraînement d'un modèle d'apprentissage machine (par exemple, un modèle de réseau neuronal tel qu'un modèle de réseau neuronal convolutif (CNN)) de telle sorte que, lorsqu'il est entraîné, le modèle peut être utilisé dans le traitement des données de vision (par exemple, à partir d'un composant de vision d'un robot), qui capturent un objet, pour générer une riche incorporation centrée sur un objet pour les données de vision. L'incorporation générée peut permettre la différenciation de variations, même subtiles, d'attributs de l'objet capturé par les données de vision. |
---|---|
AbstractList | Training a machine learning model (e.g., a neural network model such as a convolutional neural network (CNN) model) so that, when trained, the model can be utilized in processing vision data (e.g., from a vision component of a robot), that captures an object, to generate a rich object-centric embedding for the vision data. The generated embedding can enable differentiation of even subtle variations of attributes of the object captured by the vision data.
L'invention concerne l'entraînement d'un modèle d'apprentissage machine (par exemple, un modèle de réseau neuronal tel qu'un modèle de réseau neuronal convolutif (CNN)) de telle sorte que, lorsqu'il est entraîné, le modèle peut être utilisé dans le traitement des données de vision (par exemple, à partir d'un composant de vision d'un robot), qui capturent un objet, pour générer une riche incorporation centrée sur un objet pour les données de vision. L'incorporation générée peut permettre la différenciation de variations, même subtiles, d'attributs de l'objet capturé par les données de vision. |
Author | KHANSARI ZADEH, Seyed Mohammad LYNCH, Harrison SERMANET, Pierre BAI, Yunfei PIRK, Soeren |
Author_xml | – fullname: PIRK, Soeren – fullname: LYNCH, Harrison – fullname: BAI, Yunfei – fullname: KHANSARI ZADEH, Seyed Mohammad – fullname: SERMANET, Pierre |
BookMark | eNqNjM0KgkAURl3Uor93uNBaMIXC5Thz1SmdG-MtlyIxrkIFe3-aRQ_Q6vAdPs42WI3T6DbBwFZoo00BAhTiHQw-rKg8uCV7g5oUVsAEBRq0ghGsliVQdkXJoUTDfgPWGSrlKw1QDpYyYm-futFkQAkW-2A99O_FHX7cBcccWZahm6fOLXP_cqP7dC3FURxF5zS5pOKU_Pf6AqQRN08 |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | ENTRAÎNEMENT D'UN MODÈLE DE RÉSEAU NEURONAL PROFOND POUR GÉNÉRER DE RICHES INCORPORATIONS CENTRÉES SUR DES OBJETS DE DONNÉES DE VISION ROBOTIQUE |
ExternalDocumentID | WO2020069379A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_WO2020069379A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:56:08 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_WO2020069379A13 |
Notes | Application Number: WO2019US53554 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200402&DB=EPODOC&CC=WO&NR=2020069379A1 |
ParticipantIDs | epo_espacenet_WO2020069379A1 |
PublicationCentury | 2000 |
PublicationDate | 20200402 |
PublicationDateYYYYMMDD | 2020-04-02 |
PublicationDate_xml | – month: 04 year: 2020 text: 20200402 day: 02 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | GOOGLE LLC |
RelatedCompanies_xml | – name: GOOGLE LLC |
Score | 3.2568364 |
Snippet | Training a machine learning model (e.g., a neural network model such as a convolutional neural network (CNN) model) so that, when trained, the model can be... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING PHYSICS |
Title | TRAINING A DEEP NEURAL NETWORK MODEL TO GENERATE RICH OBJECT-CENTRIC EMBEDDINGS OF ROBOTIC VISION DATA |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200402&DB=EPODOC&locale=&CC=WO&NR=2020069379A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8Iw8ELw801R4weaJpq9LeIYgz0Qs62dTNlKZvl4I2xsiYkBIjP-fa8FlCee2l6TS3vN9T56dwV4MKSMTDNLb0xaE93MsNeyaqlut0yZeDmdNFPpGggjq9M3X0eNUQk-N7kwqk7ojyqOiByVIr8X6r5e_DuxqIqtXD4mHwiaP_uiTbW1dSyPvGZo1G2zHqfc0zwP7TYtildzFspi20FbaQ8V6abkBzZwZV7KYluo-Cew30N8s-IUStmsAkfe5u-1ChyG6yfvChyoGM10icA1Hy7PIBexE0RB9EIcQhnrkYj1Y6eLjRjy-I2EnLIuEZysItMEI3HgdQhXn5voHosEjgkLXUYpYnkn3Ccxd7lA6CCQ9yuhjnDO4d5nwuvouPTxH6XGQ769z_oFlGfzWXYJpCYTVrMkQX3GNpN6bqNWYNhoHeTT5Mkw8iuo7sJ0vXv6Bo7lUAW0GFUoF1_f2S3K6iK5UyT-BWDtjVQ |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8IwsCF-4Zuixg_UJpq9LeIYgz0Qs62dm2wrmeXjjbCxJSZmEJnx73stoDzx1PYuufQj17tr7wOhR03IyDQz1Na0M1X1DHodo5GqZkcXgZezaTsVTwNhZHgD_W3cGlfQ5yYWRuYJ_ZHJEYGjUuD3Ut7Xi_9HLCJ9K5dPyQeA5i8u7xJlbR2LI29oCrG7tM8IcxTHAbtNieIVzgBZbFpgK-2Dkt0W_ECHtohLWWwLFfcEHfSBXlGeokpW1FDV2dReq6GjcP3lXUOH0kczXQJwzYfLM5Tz2PIjP3rFFiaU9nFEB7EVQMNHLO7hkBEaYM7wyjONUxz7joeZLG6iOjTiMMY0tCkhQOUdMxfHzGYcoENf3K-YWNw6Rw8u5Y6nwtQnfzs1GbHtdTYv0F4xL7JLhBsiYDVLEtBnTD1p5iZoBZoJ1kE-S541Lb9C9V2Urnej71HV42EwCfyod4OOBUo6t2h1tFd-fWe3ILfL5E5u9y8vl5BH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=TRAINING+A+DEEP+NEURAL+NETWORK+MODEL+TO+GENERATE+RICH+OBJECT-CENTRIC+EMBEDDINGS+OF+ROBOTIC+VISION+DATA&rft.inventor=PIRK%2C+Soeren&rft.inventor=LYNCH%2C+Harrison&rft.inventor=BAI%2C+Yunfei&rft.inventor=KHANSARI+ZADEH%2C+Seyed+Mohammad&rft.inventor=SERMANET%2C+Pierre&rft.date=2020-04-02&rft.externalDBID=A1&rft.externalDocID=WO2020069379A1 |