Cull streams for fine-grained rendering predication
One embodiment of the present invention sets forth a technique to perform fine-grained rendering predication using an IGPU and a DGPU. A graphics driver divides a 3D object into batches of triangles. The IGPU processes each batch of triangles through a modified rendering pipeline to determine if the...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
08.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One embodiment of the present invention sets forth a technique to perform fine-grained rendering predication using an IGPU and a DGPU. A graphics driver divides a 3D object into batches of triangles. The IGPU processes each batch of triangles through a modified rendering pipeline to determine if the batch is culled. The IGPU writes bits into a bitstream corresponding to the visibility of the batches. The DGPU reads bits from the bitstream and performs full-blown rendering, including shading, but only on the batches of triangles whose bit indicates that the batch is visible. Advantageously, this approach to rendering predication provides fine-grained culling without adding unnecessary overhead, thereby optimizing both hardware resources and performance. |
---|---|
AbstractList | One embodiment of the present invention sets forth a technique to perform fine-grained rendering predication using an IGPU and a DGPU. A graphics driver divides a 3D object into batches of triangles. The IGPU processes each batch of triangles through a modified rendering pipeline to determine if the batch is culled. The IGPU writes bits into a bitstream corresponding to the visibility of the batches. The DGPU reads bits from the bitstream and performs full-blown rendering, including shading, but only on the batches of triangles whose bit indicates that the batch is visible. Advantageously, this approach to rendering predication provides fine-grained culling without adding unnecessary overhead, thereby optimizing both hardware resources and performance. |
Author | Diard Franck R Everitt Cass W |
Author_xml | – fullname: Diard Franck R – fullname: Everitt Cass W |
BookMark | eNrjYmDJy89L5WQwdi7NyVEoLilKTcwtVkjLL1JIy8xL1U0vSgRSKQpFqXkpqUWZeekKBUWpKZnJiSWZ-Xk8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSQ-NNjSxMLS3MzcydCYCCUAsAMuOw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US9489767B1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US9489767B13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:59:32 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US9489767B13 |
Notes | Application Number: US20070956306 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161108&DB=EPODOC&CC=US&NR=9489767B1 |
ParticipantIDs | epo_espacenet_US9489767B1 |
PublicationCentury | 2000 |
PublicationDate | 20161108 |
PublicationDateYYYYMMDD | 2016-11-08 |
PublicationDate_xml | – month: 11 year: 2016 text: 20161108 day: 08 |
PublicationDecade | 2010 |
PublicationYear | 2016 |
RelatedCompanies | Diard Franck R NVIDIA Corporation Everitt Cass W |
RelatedCompanies_xml | – name: Diard Franck R – name: Everitt Cass W – name: NVIDIA Corporation |
Score | 3.062751 |
Snippet | One embodiment of the present invention sets forth a technique to perform fine-grained rendering predication using an IGPU and a DGPU. A graphics driver... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
Title | Cull streams for fine-grained rendering predication |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161108&DB=EPODOC&locale=&CC=US&NR=9489767B1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-M-XnTqrj5QQ7SW9GuH-kORWjaMgS34VbZbbRpNnawK23Ff9-X0E0vegtJCHkPXn7v5X0BPEhIy2XNVlc4A8NOB7mR4laDmoJnpsuliiyjLcbuKLFfFs6iA5tdLoyqE_qliiOiRHGU90a91-XPJ1aoYivrx2yDU9vneO6Hemsdo_piPnl6GPjRdBJOmM6Yn8z08Zs_tD0EXhqgoXSAWjSVwhC9BzIppfyNKPEZHE7xsKI5h44oNDhhu8ZrGhy_tv5uDY5UgCavcbIVwvoCLIZmI5FJHulHTVDpJCvcbKxlsweRk0o1h0NEImWlvDCSmksgcTRnIwPvsdzTvExm-xtbV9AttoW4BpILSjPXSjkObMcSyFpEWC_3OJpVPF31oPfnMf1_1m7gVDJP5dh5t9Btqk9xh2DbZPeKTd8jRYTA |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5V5VE2CCDK0wPKFkGbJ0OEFKdRgDataIK6RYnjog6kVRPE3-dspYUFNsu2LN9J5-_O9wK4FZBWiJqtFjf7mpH1Cy3DrZrd4yzvWUyoyCLaIrLCxHiembMWLDa5MLJO6JcsjogSxVDea_ler34-sXwZW1nd5QucWj4GseurjXWM6kvv3lF9zx1Mxv6YqpS6yVSNXt0Hw0HgtT00lHZQw7aFMAzePJGUsvqNKMEh7E7wsLI-ghYvFejQTeM1BfZHjb9bgT0ZoMkqnGyEsDoGnaLZSESSR_ZREVQ6yRw3a--i2QMvyFo2h0NEIqu19MIIak6ABIOYhhreI93SnCbT7Y31U2iXy5KfASm4beeWnjEcGKbOkbWIsE7hMDSrWDbvQvfPY87_WbuBThiPhunwKXq5gAPBSJlv51xCu15_8isE3jq_liz7Bohoh7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Cull+streams+for+fine-grained+rendering+predication&rft.inventor=Diard+Franck+R&rft.inventor=Everitt+Cass+W&rft.date=2016-11-08&rft.externalDBID=B1&rft.externalDocID=US9489767B1 |