CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION

A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors int...

Full description

Saved in:
Bibliographic Details
Main Authors PEYTON JONES, Simon Loftus, ZHANG, Cheng, LAMB, Angus James, MORALES- ÁLVAREZ, Pablo, ALLAMANIS, Miltiadis
Format Patent
LanguageEnglish
Published 10.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector
AbstractList A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the variables of the input vector into a plurality of latent vectors; determining an output vector by inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables; and minimising a loss function by tuning the edge probabilities of the graph, at least one parameter of the first neural network and at least one parameter of the second neural network, wherein the loss function comprises a function of the graph and a measure of difference between the input vector and the output vector
Author PEYTON JONES, Simon Loftus
MORALES- ÁLVAREZ, Pablo
LAMB, Angus James
ALLAMANIS, Miltiadis
ZHANG, Cheng
Author_xml – fullname: PEYTON JONES, Simon Loftus
– fullname: ZHANG, Cheng
– fullname: LAMB, Angus James
– fullname: MORALES- ÁLVAREZ, Pablo
– fullname: ALLAMANIS, Miltiadis
BookMark eNrjYmDJy89L5WTQdXYMDXb0UXDxDHb2D3MNilRw9HNR8PUMDvb0c1cIc_QJdVXw9A0IDXEM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGJsbGFqamlo6GxsSpAgBccyhd
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2024338559A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2024338559A13
IEDL.DBID EVB
IngestDate Fri Nov 01 05:35:34 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2024338559A13
Notes Application Number: US202218579451
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241010&DB=EPODOC&CC=US&NR=2024338559A1
ParticipantIDs epo_espacenet_US2024338559A1
PublicationCentury 2000
PublicationDate 20241010
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 20241010
  day: 10
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies Microsoft Technology Licensing, LLC
RelatedCompanies_xml – name: Microsoft Technology Licensing, LLC
Score 3.5643837
Snippet A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the values of the...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241010&DB=EPODOC&locale=&CC=US&NR=2024338559A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcCj1edOoVK0SUHILRpM09RAk3SQ20jxoklJPpZsHCJIWE_H3nV1S7anHnYFhdmHejwW4HyhUL3Rdl9VsuJS1pYF6UDVKORtSWhqI0fgUvx8Mxqn2NtfnHfjczMLwPaE_fDkiSlSG8t5wfb3-T2LZvLeyfqAfCFq9uIlpS210jOYI4wvJHplOFNohkQgx01gKphyH0Rj6zxbGSnvoSBusAcyZjdhcynrbqLgnsB8hvao5hU5RCXBENn-vCXDotyVvAQ54j2ZWI7CVw_oMZGKlsTURbS8m4cyZvotWYIu-h6oxeBVn1iR1RM-P0oRnoM7hznUSMpaRg8XfhRdpvM2uegHdalUVPRApmwNVn6miqqwAl9OnvCiVsjAMmqPvlF1Cfxelq93oazhmR6aZH5U-dJuv7-IGTW5Db_lL_QIhoX8u
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH6UutSbVsWlakDJLRhN08RDkXSS2miW0mRKPYVOmoAgaTER_75vhlR76nU-eLwZePsyAHc9lemZruuKlppzpTs3UA9qRq6kJmO5gUhXTPH7QW9Eu68zfdaAz_UsjNgT-iOWI6JEpSjvldDXq_8kli16K8t79oFHy-dh3LflOjpGc4TxhWwP-s44tEMiE9KnkRxMBIbRGPrPFsZKO-hkm3zTvjMd8LmU1aZRGR7C7hjpFdURNLKiDS2y_nutDft-XfJuw57o0UxLPKzlsDwGhVg0sjzJdiMSTp3Ju2QFtuS7qBqDF2lqedSRXH9MY5GBOoHboROTkYIcJH8XTmi0ya52Cs1iWWRnIDE-B6o9MVXTeAFuwR4XWa7mmWGwBfpO6Tl0tlG62A7fQGsU-17iucHbJRxwiGvpB7UDzerrO7tC81uxa_Fqv0C9gh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=CAUSAL+DISCOVERY+AND+MISSING+VALUE+IMPUTATION&rft.inventor=PEYTON+JONES%2C+Simon+Loftus&rft.inventor=ZHANG%2C+Cheng&rft.inventor=LAMB%2C+Angus+James&rft.inventor=MORALES-+%C3%81LVAREZ%2C+Pablo&rft.inventor=ALLAMANIS%2C+Miltiadis&rft.date=2024-10-10&rft.externalDBID=A1&rft.externalDocID=US2024338559A1