EDITING A TARGET MODEL TO FORGET DATA SAMPLES USING A REFERENCE MODEL TO ADJUST WEIGHTS OF THE TARGET MODEL

Provided are a computer program product, system, and method for editing a target model to forget data samples. Forget data samples of data samples to forget are inputted into a reference model, trained on a non-private data set, to produce reference output. The forget data samples to forget are inpu...

Full description

Saved in:
Bibliographic Details
Main Authors FARKASH, Ariel, SHMELKIN, Ron, GOLDSTEEN, Abigail, ZOHAR, Tal
Format Patent
LanguageEnglish
Published 29.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Provided are a computer program product, system, and method for editing a target model to forget data samples. Forget data samples of data samples to forget are inputted into a reference model, trained on a non-private data set, to produce reference output. The forget data samples to forget are inputted to a target model, trained on a total data set comprising the non-private data set and a private data set, to produce target output. The private data set includes the forget data samples A loss function is calculated to measure a divergence of the reference output and the target output. A determination is made of gradients that minimize an error of the loss function. Optimized gradients are calculated from the determined gradients. The optimized gradients are applied to update weights in the target model to produce an edited target model.
AbstractList Provided are a computer program product, system, and method for editing a target model to forget data samples. Forget data samples of data samples to forget are inputted into a reference model, trained on a non-private data set, to produce reference output. The forget data samples to forget are inputted to a target model, trained on a total data set comprising the non-private data set and a private data set, to produce target output. The private data set includes the forget data samples A loss function is calculated to measure a divergence of the reference output and the target output. A determination is made of gradients that minimize an error of the loss function. Optimized gradients are calculated from the determined gradients. The optimized gradients are applied to update weights in the target model to produce an edited target model.
Author SHMELKIN, Ron
GOLDSTEEN, Abigail
ZOHAR, Tal
FARKASH, Ariel
Author_xml – fullname: FARKASH, Ariel
– fullname: SHMELKIN, Ron
– fullname: GOLDSTEEN, Abigail
– fullname: ZOHAR, Tal
BookMark eNqNzD0LwjAUheEMOvj1Hy44C5qK6HhpbppI20hyi2MpEhelLdT_j6CCuDkdXng4UzFquzZOxI2UZVtmgMDoM2IonKIc2IF2r1bICAGLU04BqvC2njR5KlP6clTHKjCcyWaGAzgNbOjndC7G1-Y-xMVnZ2KpiVOzin1Xx6FvLrGNj7oKci23cn_YyQQ3yX_qCY16OGQ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2024289623A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2024289623A13
IEDL.DBID EVB
IngestDate Fri Sep 27 05:22:25 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2024289623A13
Notes Application Number: US202318176068
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240829&DB=EPODOC&CC=US&NR=2024289623A1
ParticipantIDs epo_espacenet_US2024289623A1
PublicationCentury 2000
PublicationDate 20240829
PublicationDateYYYYMMDD 2024-08-29
PublicationDate_xml – month: 08
  year: 2024
  text: 20240829
  day: 29
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies INTERNATIONAL BUSINESS MACHINES CORPORATION
RelatedCompanies_xml – name: INTERNATIONAL BUSINESS MACHINES CORPORATION
Score 3.5677612
Snippet Provided are a computer program product, system, and method for editing a target model to forget data samples. Forget data samples of data samples to forget...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title EDITING A TARGET MODEL TO FORGET DATA SAMPLES USING A REFERENCE MODEL TO ADJUST WEIGHTS OF THE TARGET MODEL
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240829&DB=EPODOC&locale=&CC=US&NR=2024289623A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_HxT1PiBpolmb4syxpgPxIy1YxBgZOuUN7LPxGgGkRn_fa8NCL7weB-5tE2u19_12gN40DITw4ZmqLrZaKp6bj6pUZIYahKL_tq5mTZyWSA7NtxQH0xb0wp8rt_CyH9Cf-TniOhRCfp7KffrxSaJRWVt5fIxfkfW_MXhHaqs0LEm2ycrtNthE496tmLbnTBQxr6UIbbAYG8hVtrDg3RbFICx1654l7LYDirOCexP0F5RnkIlK2pwZK97r9XgcLS68q7BgazRTJbIXPnh8gw-GO3z_rhHLMItv8c4GXmUDQn3CKI6QVOLWySwRpMhC4jorSF0feYwX-SUNuoWHYQBJ2-s33N5QDyHcJf9M3oO9w7jtqvi-Gd_yzULg-3JNi-gWsyL7BKImelZnKd6kiLoilIjjvQ0brUbaYKgKY_TK6jvsnS9W3wDx4IU-VbtuQ7V8us7u8WAXcZ3cp1_Ab0qkD4
link.rule.ids 230,309,783,888,25578,76886
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_MA3RY0fqE00e1uUMeZ8IGasHRvug2yd8kbYV2I0g8iM_75tA4IvPPauubSXXK-_610P4E7JdeY2FE1W9XZHVgv9QZ6mqSanCe-vXehZuxAJsr5mx-pw3B3X4HNVCyP-Cf0RnyMyi0qZvVfivJ6vg1hY5FYu7pN3Rpo9W7SHpSU6VkT7ZAn3e2QU4MCUTLMXR5IfCh7DFszZGwwr7bBLts7tgbz2eV3KfNOpWIewO2LyyuoIannZhIa56r3WhH1v-eTdhD2Ro5kuGHFph4tj-CDYoY4_QAaiRjggFHkBJi6iAWKojo-xQQ0UGd7IJRHivTX43JBYJOQxpfV0Aw_jiKI34gxsGqHAQtQm_4SewK1FqGnLbP2TP3VN4mhzs51TqJezMj8DpOdqnhSZmmYMdE0zLZmqWdJ9bGcpA01Fkp1Da5uki-3sG2jY1HMnruO_XMIBZ_HYq_LUgnr19Z1fMeddJddC57-ss5Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=EDITING+A+TARGET+MODEL+TO+FORGET+DATA+SAMPLES+USING+A+REFERENCE+MODEL+TO+ADJUST+WEIGHTS+OF+THE+TARGET+MODEL&rft.inventor=FARKASH%2C+Ariel&rft.inventor=SHMELKIN%2C+Ron&rft.inventor=GOLDSTEEN%2C+Abigail&rft.inventor=ZOHAR%2C+Tal&rft.date=2024-08-29&rft.externalDBID=A1&rft.externalDocID=US2024289623A1