MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS

An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behavi...

Full description

Saved in:
Bibliographic Details
Main Authors Doulas, Peter, Hogan, William, Mirhoseininejad, Seyedmorteza, Esmalifalak, Mohammad, Mathewson, Taylor, Emery, Francis, Yu, Min Hua, Iyengar, Akshay
Format Patent
LanguageEnglish
Published 08.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process.
AbstractList An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process.
Author Esmalifalak, Mohammad
Yu, Min Hua
Mirhoseininejad, Seyedmorteza
Iyengar, Akshay
Emery, Francis
Mathewson, Taylor
Hogan, William
Doulas, Peter
Author_xml – fullname: Doulas, Peter
– fullname: Hogan, William
– fullname: Mirhoseininejad, Seyedmorteza
– fullname: Esmalifalak, Mohammad
– fullname: Mathewson, Taylor
– fullname: Emery, Francis
– fullname: Yu, Min Hua
– fullname: Iyengar, Akshay
BookMark eNqNyr0KwjAQAOAMOvj3DgfOgqbW_UguNthcShopTqVInCQt1PfHxQdw-pZvLRZ5zGkljENVWSaoCQNbvkLjOwqkAdk7rB-gKZKK1jMYH8Ch5UiMrAg6H27gg6bQbsXyNbzntPu5EXtDUVWHNI19mqfhmXL69PdWHuVZXsqilHgq_ltfhaUvBA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2024265352A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2024265352A13
IEDL.DBID EVB
IngestDate Fri Aug 16 05:49:35 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2024265352A13
Notes Application Number: US202418624335
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240808&DB=EPODOC&CC=US&NR=2024265352A1
ParticipantIDs epo_espacenet_US2024265352A1
PublicationCentury 2000
PublicationDate 20240808
PublicationDateYYYYMMDD 2024-08-08
PublicationDate_xml – month: 08
  year: 2024
  text: 20240808
  day: 08
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies FIIX INC
RelatedCompanies_xml – name: FIIX INC
Score 3.5520837
Snippet An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240808&DB=EPODOC&locale=&CC=US&NR=2024265352A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT8IwFD4heH3TqfGCpolmb4sIu_FAzNg6QVlHxhB4ItvYEhMziJvx73vaDOWJx54mTdvk9PRrv_MdgAdO78s6WqRwNSdFXcZNJcpMXUkxlqV4n0iTJU9O9pjen6ivM21Wg89NLozQCf0R4ojoUQn6eynO6_X_I5YjuJXFY_yBptWzG3YduULHXK-racpOr0tHvuPbsm13J2OZBaKvpXMtEwux0h5epA3uD_S9x_NS1ttBxT2B_RGOl5enUEtzCY7sTe01CQ696stbggPB0UwKNFZ-WJyB61l2f8AoGVIrYAP2Qkb-lAbUIRbzPWs4Jw4NqeCHEIR5xLO49C3jhWjI1A_eCEI_GozP4d6lod1XcGqLv51YTMbb62hfQD1f5eklEMR5sZ7xkJPEajtKOog89VasGZlmPGlZdgWNXSNd7-6-gWPeFLw3swH18us7vcVYXMZ3Ygt_AeiohZY
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4Q_IFvOjX-QG2i2dsiAhvjYTFj69xk68gYgk-EjS0xMYPIjP--1waUJ157SdM2ud597XffATxwel_eVWcKV3NS2vOkocxyXVMyjGUZ5hNZOufFyQHT3FH7daJOKvC5qYUROqE_QhwRPSpFfy_Ffb38f8SyBbdy9Zh84NDi2YkNW16jY67X1dBlu2fQQWiHlmxZxmgos0jYmhrXMjERK-1hkq3zfgf0rcfrUpbbQcU5hv0BzleUJ1DJCglq1qb3mgSHwfrLW4IDwdFMVzi49sPVKTiBabkeo8SnZsQ89kIG4ZhG1CYmCwPTfyc2janghxCEeSQwufQt441oyDiM-gShH42GZ3Dv0NhyFVza9O8kpqPh9j5a51AtFkV2AQRxXqLlPOSkSbs1S7uIPLVmonZytfOk5vkl1HfNdLXbfAc1Nw78qe-x_jUccZPgwOl1qJZf39kNxuUyuRXH-QtUoYiG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MACHINE+LEARNING+POWERED+ANOMALY+DETECTION+FOR+MAINTENANCE+WORK+ORDERS&rft.inventor=Doulas%2C+Peter&rft.inventor=Hogan%2C+William&rft.inventor=Mirhoseininejad%2C+Seyedmorteza&rft.inventor=Esmalifalak%2C+Mohammad&rft.inventor=Mathewson%2C+Taylor&rft.inventor=Emery%2C+Francis&rft.inventor=Yu%2C+Min+Hua&rft.inventor=Iyengar%2C+Akshay&rft.date=2024-08-08&rft.externalDBID=A1&rft.externalDocID=US2024265352A1