NETWORK-LIGHTWEIGHT MODEL FOR MULTI DEEP-LEARNING TASKS

A method, computer program, and computer system are provided for performing multiple machine learning tasks through a shared framework. Data corresponding to a plurality of predetermined machine learning tasks is received. One or more steps of the machine learning tasks associated with the received...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Yong, Luo, Deng Xin, Wang, Yu Ying YY, Yang, Xiang Yu, Nan, Chi, Jia, Zhi Yong
Format Patent
LanguageEnglish
Published 13.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method, computer program, and computer system are provided for performing multiple machine learning tasks through a shared framework. Data corresponding to a plurality of predetermined machine learning tasks is received. One or more steps of the machine learning tasks associated with the received data is performed on the received data by a shared backbone of a machine learning model. The predetermined plurality of machine learning tasks is completed on the received data by a plurality of sub-networks associated with each of the plurality of predetermined machine learning tasks.
AbstractList A method, computer program, and computer system are provided for performing multiple machine learning tasks through a shared framework. Data corresponding to a plurality of predetermined machine learning tasks is received. One or more steps of the machine learning tasks associated with the received data is performed on the received data by a shared backbone of a machine learning model. The predetermined plurality of machine learning tasks is completed on the received data by a plurality of sub-networks associated with each of the plurality of predetermined machine learning tasks.
Author Luo, Deng Xin
Jia, Zhi Yong
Yang, Xiang Yu
Wang, Yu Ying YY
Nan, Chi
Wang, Yong
Author_xml – fullname: Wang, Yong
– fullname: Luo, Deng Xin
– fullname: Wang, Yu Ying YY
– fullname: Yang, Xiang Yu
– fullname: Nan, Chi
– fullname: Jia, Zhi Yong
BookMark eNrjYmDJy89L5WQw93MNCfcP8tb18XT3CAl3BZEKvv4urj4Kbv5BCr6hPiGeCi6urgG6Pq6OQX6efu4KIY7B3sE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjE0NLYxMzE0dCYOFUAATUrEQ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2024193464A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2024193464A13
IEDL.DBID EVB
IngestDate Fri Jul 19 12:45:22 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2024193464A13
Notes Application Number: US202218064091
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240613&DB=EPODOC&CC=US&NR=2024193464A1
ParticipantIDs epo_espacenet_US2024193464A1
PublicationCentury 2000
PublicationDate 20240613
PublicationDateYYYYMMDD 2024-06-13
PublicationDate_xml – month: 06
  year: 2024
  text: 20240613
  day: 13
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies INTERNATIONAL BUSINESS MACHINES CORPORATION
RelatedCompanies_xml – name: INTERNATIONAL BUSINESS MACHINES CORPORATION
Score 3.540568
Snippet A method, computer program, and computer system are provided for performing multiple machine learning tasks through a shared framework. Data corresponding to a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title NETWORK-LIGHTWEIGHT MODEL FOR MULTI DEEP-LEARNING TASKS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240613&DB=EPODOC&locale=&CC=US&NR=2024193464A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_HzTqUFFs0Szt0ZgZZMHYmArMNkHYZ3wRjbYEhMziMz473utoDzx0qRtcrk2-fV3195dAR7RimhkCGgyzxqU4OlHSYy8R7JWnSZIEelzTeQOe74xiOjrtDktwcc2F0bWCf2WxRERUXPEeyHP69X_JZYtYyvXT8k7Di1ferxtaxvv-JeeNLvbZqPADizNstpRqPljOYe2CjVoB32lAzSkTYEH9tYVeSmrXVLpncHhCOXlxTmU0lyBE2v795oCx97myVuBIxmjOV_j4AaH6wswfcYnwXhIXKc_4BMmWtULbOaq6NWpXuRyR7UZGxGXdca-4_dV3gmH4SU89Bi3BgR1mf0tfRaFu4rrV1DOl3laAVUUdkdPpmnoixbaQFmcmC2jvqBxMzVj3axdQ3WfpJv907dwKroiJKquV6FcfH6ld0i-RXIv9-wHxTmBFg
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8JADG8IfuCbosYP1CWavV0EdmzwQAxsB5vsg7Cb8LZssCUmZhCZ8d-3N0F54uUe2qTpXdL-2ru2B_CEUUQzRYMm87RJCXo_SiLEPZJ2GjRGiEjaddE77LiqGdDXWWtWgo9tL0wxJ_S7GI6IFjVHe88Lf736v8QyitrK9XP8jqTly4B3DXmTHf_Ck2z0u2zsGZ4u63o38GV3UvAwVqEq7WGudIBBdlv8d8De-qIvZbULKoNTOByjvCw_g1KSVaGib_9eq8Kxs3nyrsJRUaM5XyNxY4frc9BcxqfeZERsa2jyKROr5HgGsyXM6iQnsLklGYyNic16E9dyhxLv-SP_Ah4HjOsmQV3Cv62Hgb-ruHIJ5WyZJVcgicHumMm0VGXRwRgojWKtozYWNGolWqRo9Wuo7ZN0s5_9ABWTO3ZoW-7oFk4ES5RHNZQalPPPr-QOgTiP74vz-wH7EYQG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=NETWORK-LIGHTWEIGHT+MODEL+FOR+MULTI+DEEP-LEARNING+TASKS&rft.inventor=Wang%2C+Yong&rft.inventor=Luo%2C+Deng+Xin&rft.inventor=Wang%2C+Yu+Ying+YY&rft.inventor=Yang%2C+Xiang+Yu&rft.inventor=Nan%2C+Chi&rft.inventor=Jia%2C+Zhi+Yong&rft.date=2024-06-13&rft.externalDBID=A1&rft.externalDocID=US2024193464A1