TRAINING PROTEIN STRUCTURE PREDICTION NEURAL NETWORKS USING REDUCED MULTIPLE SEQUENCE ALIGNMENTS
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training neural networks to predict the structure of a protein. In one aspect, a method comprises: obtaining, for each of a plurality of proteins, a full multiple sequence alignment for the protein...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
09.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training neural networks to predict the structure of a protein. In one aspect, a method comprises: obtaining, for each of a plurality of proteins, a full multiple sequence alignment for the protein; generating, for each of the plurality of proteins, target structure parameters characterizing a structure of the protein from the full multiple sequence alignment for the protein, comprising processing a representation of the full multiple sequence alignment for the protein using the structure prediction neural network to generate output structure parameters characterizing a structure of the protein, and determining the target structure parameters for the protein based on the output structure parameters for the protein; determining, for each of the plurality of proteins, a reduced multiple sequence alignment for the protein, comprising removing or masking data from the full multiple sequence alignment for the protein. |
---|---|
AbstractList | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training neural networks to predict the structure of a protein. In one aspect, a method comprises: obtaining, for each of a plurality of proteins, a full multiple sequence alignment for the protein; generating, for each of the plurality of proteins, target structure parameters characterizing a structure of the protein from the full multiple sequence alignment for the protein, comprising processing a representation of the full multiple sequence alignment for the protein using the structure prediction neural network to generate output structure parameters characterizing a structure of the protein, and determining the target structure parameters for the protein based on the output structure parameters for the protein; determining, for each of the plurality of proteins, a reduced multiple sequence alignment for the protein, comprising removing or masking data from the full multiple sequence alignment for the protein. |
Author | Reiman, David Jumper, John Green, Timothy Frederick Goldie Evans, Richard Andrew |
Author_xml | – fullname: Reiman, David – fullname: Jumper, John – fullname: Evans, Richard Andrew – fullname: Green, Timothy Frederick Goldie |
BookMark | eNqNi8sKwjAQRbPQha9_CLgWaiO6DulYg-m0TWZwWYvElbSF-v9YwQ9wdeCee5Zi1vVdXIg7eW3RYi4rXxJYlIE8G2IP0wKZNWRLlAjstZtAt9Jfg-TwTSbPBjJZsCNbOZABagY0ILWzORaAFNZi_mxfY9z8uBLbM5C57OLQN3Ec2kfs4rvhkCapUsfkpA56r_57fQAd3Dbx |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2023360734A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2023360734A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:56:08 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2023360734A13 |
Notes | Application Number: US202118025689 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231109&DB=EPODOC&CC=US&NR=2023360734A1 |
ParticipantIDs | epo_espacenet_US2023360734A1 |
PublicationCentury | 2000 |
PublicationDate | 20231109 |
PublicationDateYYYYMMDD | 2023-11-09 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231109 day: 09 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | DeepMind Technologies Limited |
RelatedCompanies_xml | – name: DeepMind Technologies Limited |
Score | 3.508416 |
Snippet | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training neural networks to predict the structure of a... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
Title | TRAINING PROTEIN STRUCTURE PREDICTION NEURAL NETWORKS USING REDUCED MULTIPLE SEQUENCE ALIGNMENTS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231109&DB=EPODOC&locale=&CC=US&NR=2023360734A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_HxT1PiBpolmb4vMsY09EDO2AtOxza1T3pB9kJiYQWTGf99rA8oTT02vSdOv612vd78DuMsNQzdz3AEFLwK5baQtOdWnimzkaoYCJdPUXKB9-vowaT-NtXENPtexMAIn9EeAIyJHZcjvlbivF_9GLEf4Vi7v0w8kzR_7rOtIq9cxKitKy5ScXpeGgRPYkm13k1jyI9Gm6nie2xa-lXZQkTa4Axh97fG4lMWmUOkfwW6I_ZXVMdSKsgEH9jr3WgP2R6sv7wbsCR_NbInEFR8uT-CdRZbru_6AhFHAqOuTmEWJzV0YkMIRG7nlifg0iSwPC_YWRM8x4Tk2BiTi2XaoQ0aJx9zQoySmLwm3NBHLcwc-R_ePT-G2T5k9lHHQk781miTx5gzVM6iX87I4B6KkWivXipk-K1BgpenUnKFK8DA1BTB9p3MBzW09XW5vvoJDXhXBeWYT6tXXd3GNUrpKb8Ti_gKu1I18 |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QX3hT1PhA3UTTWyO1tKUHYkq7QKVsax_KDSktiYkpRGr8-85uQDlx2mQm2exrdmZnZ74BuM8MQzcz3AEFLwK5aaQNOdUnimxk6hQVylRTM4H2yfR-0nweaaMKfK5zYQRO6I8AR0SJmqK8l-K-Xvw7sRwRW7l8SD-QNH_qxm1HWr2O0VhRGqbkdNo08B3flmy7nUQSCwVP1fE8Ny18K-2ikd3iSPv0tcPzUhabSqV7BHsB9leUx1DJixpU7XXttRocDFdf3jXYFzGa0yUSV3K4PIH3OLRc5rIeCUI_pi4jURwmNg9hQApHbOSeJ8JoEloeNvGbHw4iwmts9EjIq-1QhwwTL3YDj5KIviTc00Qsz-0xju4fncJdl8Z2X8ZBj__WaJxEmzNUz2CnmBf5ORAl1RqZls_0WY4KK00n5gxNgseJKYDpW60LqG_r6XI7-xaq_XjojT2XDa7gkLNEop5Zh53y6zu_Ro1dpjdioX8BenmQbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=TRAINING+PROTEIN+STRUCTURE+PREDICTION+NEURAL+NETWORKS+USING+REDUCED+MULTIPLE+SEQUENCE+ALIGNMENTS&rft.inventor=Reiman%2C+David&rft.inventor=Jumper%2C+John&rft.inventor=Evans%2C+Richard+Andrew&rft.inventor=Green%2C+Timothy+Frederick+Goldie&rft.date=2023-11-09&rft.externalDBID=A1&rft.externalDocID=US2023360734A1 |