CONSISTENT FILTERING OF MACHINE LEARNING DATA
Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data s...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
27.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data set. The first training set is used to train a machine learning model during a first training-and-evaluation iteration. A first test set comprising records of at least a second chunk is identified using the metadata, and is used to evaluate the model during the first training-and-evaluation iteration. |
---|---|
AbstractList | Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data set. The first training set is used to train a machine learning model during a first training-and-evaluation iteration. A first test set comprising records of at least a second chunk is identified using the metadata, and is used to evaluate the model during the first training-and-evaluation iteration. |
Author | Zheng, Tianming Dirac, Leo Parker Li, Jin Zhuo, Donghui |
Author_xml | – fullname: Zheng, Tianming – fullname: Dirac, Leo Parker – fullname: Zhuo, Donghui – fullname: Li, Jin |
BookMark | eNrjYmDJy89L5WTQdfb3C_YMDnH1C1Fw8_QJcQ3y9HNX8HdT8HV09vD0c1XwcXUM8gOJuTiGOPIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI2NDIzMDA1NHQ2PiVAEARFAn8g |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2023126005A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2023126005A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:32:46 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2023126005A13 |
Notes | Application Number: US202218146075 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230427&DB=EPODOC&CC=US&NR=2023126005A1 |
ParticipantIDs | epo_espacenet_US2023126005A1 |
PublicationCentury | 2000 |
PublicationDate | 20230427 |
PublicationDateYYYYMMDD | 2023-04-27 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230427 day: 27 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | Amazon Technologies, Inc |
RelatedCompanies_xml | – name: Amazon Technologies, Inc |
Score | 3.4599423 |
Snippet | Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | CONSISTENT FILTERING OF MACHINE LEARNING DATA |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230427&DB=EPODOC&locale=&CC=US&NR=2023126005A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La4NAEB5C-ry1tqWPtAgt3qSJjxoPUsyqaIkaopbcgtEVCsWEaunf7-xi2pxy3FkYZhe-mZ3nAjwZKqq8scYKHIxK1ijqQfRsTZmqxZCOq6FSlaxROIxe_Ex7W-iLHnxue2H4nNAfPhwREVUg3luurzf_QSyH11Y2z6sPJK1fvdRypM47ZhFOxZCcieXOYicmEiFWlkjRnO-N2DB23UZf6QAf0gbDg_s-YX0pm12j4p3B4Qz51e059GgtwAnZ_r0mwHHYpbwFOOI1mkWDxA6HzQXIJI6SIEndKBW9YJrywVBi7ImhTfwgcsWpa88jRnPs1L6ER89NiS-jBMu_Ay-zZFdc9Qr69bqm1yCOcqNCg6zTomTgy3M1N0u0QUVFNc2k6g0M9nG63b99B6dsyXIlijGAfvv1Te_R5LarB35Tv0f7fno |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5KfdSbRqVq1YCSW7BtUtMeiqSbhESTTWm20ltJ0w0IkhYT8e87u7TaU68zMMwufDM7zwV4tAw0eX1TNDhYuW5ytIMY2Q50bmRt3s_b3XwpBoUj-uxPzddZb1aDz-0sjNwT-iOXIyKiMsR7Je31-j-J5cjeyvJp8YGk1YvHho62iY5FhrNrac5o6I5jJyYaIcNpotGJ5HXEMvaejbHSAT6yLYEH930k5lLWu07FO4XDMcorqjOo8UKBBtn-vabAcbQpeStwJHs0sxKJGxyW56CTmCZBwlzKVC8ImVwMpcaeGtnED6irhq49oYLm2My-gAfPZcTXUYP534Hn02RXXeMS6sWq4E1QO6mVo0Pu8WwpwJemRjpYog_Kcm6aA25cQWufpOv97Hto-CwK52FA327gRLBE3aRrtaBefX3zW3S_1eJO3tovYeWBbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=CONSISTENT+FILTERING+OF+MACHINE+LEARNING+DATA&rft.inventor=Zheng%2C+Tianming&rft.inventor=Dirac%2C+Leo+Parker&rft.inventor=Zhuo%2C+Donghui&rft.inventor=Li%2C+Jin&rft.date=2023-04-27&rft.externalDBID=A1&rft.externalDocID=US2023126005A1 |