CONSISTENT FILTERING OF MACHINE LEARNING DATA

Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data s...

Full description

Saved in:
Bibliographic Details
Main Authors Zheng, Tianming, Dirac, Leo Parker, Zhuo, Donghui, Li, Jin
Format Patent
LanguageEnglish
Published 27.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data set. The first training set is used to train a machine learning model during a first training-and-evaluation iteration. A first test set comprising records of at least a second chunk is identified using the metadata, and is used to evaluate the model during the first training-and-evaluation iteration.
AbstractList Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning model. Using the metadata, a first training set comprising records of at least a first chunk is identified from a plurality of chunks of a data set. The first training set is used to train a machine learning model during a first training-and-evaluation iteration. A first test set comprising records of at least a second chunk is identified using the metadata, and is used to evaluate the model during the first training-and-evaluation iteration.
Author Zheng, Tianming
Dirac, Leo Parker
Li, Jin
Zhuo, Donghui
Author_xml – fullname: Zheng, Tianming
– fullname: Dirac, Leo Parker
– fullname: Zhuo, Donghui
– fullname: Li, Jin
BookMark eNrjYmDJy89L5WTQdfb3C_YMDnH1C1Fw8_QJcQ3y9HNX8HdT8HV09vD0c1XwcXUM8gOJuTiGOPIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI2NDIzMDA1NHQ2PiVAEARFAn8g
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2023126005A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2023126005A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:32:46 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2023126005A13
Notes Application Number: US202218146075
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230427&DB=EPODOC&CC=US&NR=2023126005A1
ParticipantIDs epo_espacenet_US2023126005A1
PublicationCentury 2000
PublicationDate 20230427
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 20230427
  day: 27
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies Amazon Technologies, Inc
RelatedCompanies_xml – name: Amazon Technologies, Inc
Score 3.4599423
Snippet Consistency metadata, including a parameter for a pseudo-random number source, are determined for training-and-evaluation iterations of a machine learning...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title CONSISTENT FILTERING OF MACHINE LEARNING DATA
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230427&DB=EPODOC&locale=&CC=US&NR=2023126005A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La4NAEB5C-ry1tqWPtAgt3qSJjxoPUsyqaIkaopbcgtEVCsWEaunf7-xi2pxy3FkYZhe-mZ3nAjwZKqq8scYKHIxK1ijqQfRsTZmqxZCOq6FSlaxROIxe_Ex7W-iLHnxue2H4nNAfPhwREVUg3luurzf_QSyH11Y2z6sPJK1fvdRypM47ZhFOxZCcieXOYicmEiFWlkjRnO-N2DB23UZf6QAf0gbDg_s-YX0pm12j4p3B4Qz51e059GgtwAnZ_r0mwHHYpbwFOOI1mkWDxA6HzQXIJI6SIEndKBW9YJrywVBi7ImhTfwgcsWpa88jRnPs1L6ER89NiS-jBMu_Ay-zZFdc9Qr69bqm1yCOcqNCg6zTomTgy3M1N0u0QUVFNc2k6g0M9nG63b99B6dsyXIlijGAfvv1Te_R5LarB35Tv0f7fno
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5KfdSbRqVq1YCSW7BtUtMeiqSbhESTTWm20ltJ0w0IkhYT8e87u7TaU68zMMwufDM7zwV4tAw0eX1TNDhYuW5ytIMY2Q50bmRt3s_b3XwpBoUj-uxPzddZb1aDz-0sjNwT-iOXIyKiMsR7Je31-j-J5cjeyvJp8YGk1YvHho62iY5FhrNrac5o6I5jJyYaIcNpotGJ5HXEMvaejbHSAT6yLYEH930k5lLWu07FO4XDMcorqjOo8UKBBtn-vabAcbQpeStwJHs0sxKJGxyW56CTmCZBwlzKVC8ImVwMpcaeGtnED6irhq49oYLm2My-gAfPZcTXUYP534Hn02RXXeMS6sWq4E1QO6mVo0Pu8WwpwJemRjpYog_Kcm6aA25cQWufpOv97Hto-CwK52FA327gRLBE3aRrtaBefX3zW3S_1eJO3tovYeWBbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=CONSISTENT+FILTERING+OF+MACHINE+LEARNING+DATA&rft.inventor=Zheng%2C+Tianming&rft.inventor=Dirac%2C+Leo+Parker&rft.inventor=Zhuo%2C+Donghui&rft.inventor=Li%2C+Jin&rft.date=2023-04-27&rft.externalDBID=A1&rft.externalDocID=US2023126005A1