SYSTEM AND METHOD FOR ADAPTIVE LEARNING FOR HOSPITAL CENSUS SIMULATION
A method for performing a demand analysis for a hospital, including: (i) receiving hospital capacity information; (ii) receiving hospital data, the hospital data comprising information on patient admissions, patient discharges, and patient transfers for a previous period of time; (iii) adapting para...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Patent |
Language | English |
Published |
12.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method for performing a demand analysis for a hospital, including: (i) receiving hospital capacity information; (ii) receiving hospital data, the hospital data comprising information on patient admissions, patient discharges, and patient transfers for a previous period of time; (iii) adapting parameters of a machine learning algorithm based on the hospital data; (iv) receiving clinical information about patients currently admitted in the hospital; (v) determining, based on output from the adapted machine learning algorithm and clinical information about the patients currently admitted in the hospital and the hospital capacity information a predicted patient flow for the hospital in real-time; (vi) detecting a deviation between the predicted patient flow and at least one actual data point; and (vii) displaying to at least one user in real-time, the detected deviation for the hospital. |
---|---|
AbstractList | A method for performing a demand analysis for a hospital, including: (i) receiving hospital capacity information; (ii) receiving hospital data, the hospital data comprising information on patient admissions, patient discharges, and patient transfers for a previous period of time; (iii) adapting parameters of a machine learning algorithm based on the hospital data; (iv) receiving clinical information about patients currently admitted in the hospital; (v) determining, based on output from the adapted machine learning algorithm and clinical information about the patients currently admitted in the hospital and the hospital capacity information a predicted patient flow for the hospital in real-time; (vi) detecting a deviation between the predicted patient flow and at least one actual data point; and (vii) displaying to at least one user in real-time, the detected deviation for the hospital. |
Author | Kulkarni, Chaitanya Adhikari, Lasith Noren, David Paul Boverman, Gregory Balakrishnan, Syamanthaka Simhon, Eran |
Author_xml | – fullname: Balakrishnan, Syamanthaka – fullname: Boverman, Gregory – fullname: Kulkarni, Chaitanya – fullname: Noren, David Paul – fullname: Adhikari, Lasith – fullname: Simhon, Eran |
BookMark | eNrjYmDJy89L5WRwC44MDnH1VXD0c1HwdQ3x8HdRcPMPUnB0cQwI8QxzVfBxdQzy8_RzB4t6-AcHeIY4-ig4u_oFhwYrBHv6hvo4hnj6-_EwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI2MDAwtLYzNHQ2PiVAEAjdcvIA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2023008936A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2023008936A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:47:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2023008936A13 |
Notes | Application Number: US202217856024 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230112&DB=EPODOC&CC=US&NR=2023008936A1 |
ParticipantIDs | epo_espacenet_US2023008936A1 |
PublicationCentury | 2000 |
PublicationDate | 20230112 |
PublicationDateYYYYMMDD | 2023-01-12 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230112 day: 12 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | KONINKLIJKE PHILIPS N.V |
RelatedCompanies_xml | – name: KONINKLIJKE PHILIPS N.V |
Score | 3.439585 |
Snippet | A method for performing a demand analysis for a hospital, including: (i) receiving hospital capacity information; (ii) receiving hospital data, the hospital... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
Title | SYSTEM AND METHOD FOR ADAPTIVE LEARNING FOR HOSPITAL CENSUS SIMULATION |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230112&DB=EPODOC&locale=&CC=US&NR=2023008936A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTqUydElD6VlzbtGsfhnT9sJX1g6Ud82m0WweCdMNV_Pe9xk33tMfcQUiOXH75XS4XgEfZkBe6Xhgi8mlDpHOJigYCvUhVXetptKvoWU0Ug1DzUvo6UScN-Ni-heF1Qr95cUT0qBn6e8X369V_EMvmuZXrp_wdRctnN-nbwoYdy_VylQV70HfiyI4swbL6KRPC0a-ui-CsmciVDvAg3eO0bTyo36WsdkHFPYPDGPsrq3NoFGULTqzt32stOA42V94tOOI5mrM1Cjd-uL4Al72xxAmIGdokcBIvsgmyOWLaZpz4Y4cMHXMU-uELl3oRi_3EHBLLCVnKCPODdMhDU5fw4DqJ5Yk4tOmfJaYp252HcgXNclkWbSCykcmLXFJyqmVUyboZOnIhKXSOANRTc_UaOvt6utmvvoXTullHHiS5A83q86u4Qyyu8ntuwh9zboQq |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_JhvOhU_pgaUvhXXNu3ahyFdP2y1XyzpmE-j3ToQpBuu4r9vGjfd017v4EiOXH75XXIXgAfZkOe6Xhgi49OGiGcSFg0G9CJWda2n4a6iZzVRDCPNS_HLWB034GNTC8P7hH7z5ogsoqYs3iu-Xy__k1g2f1u5eszfmWjx5NK-LazZsVwvV1mwB30nie3YEiyrnxIhGv7qugycNZNxpT12yNY5WRoN6rqU5TaouMewnzB7ZXUCjaJsQ8va_L3WhsNwfeXdhgP-RnO6YsJ1HK5OwSVvhDohMiMbhQ71YhsxNodM20yoP3JQ4JjDyI-eudSLSeJTM0CWE5GUIOKHacBTU2dw7zrU8kQ2tMmfJyYp2Z6Hcg7NclEWF4BkI5PnuaTkWMuwknUzFsiFpOAZA6CemquX0Nll6Wq3-g5aHg2DSeBHr9dwVKvqLIQkd6BZfX4VNwyXq_yWu_MHzuSHGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=SYSTEM+AND+METHOD+FOR+ADAPTIVE+LEARNING+FOR+HOSPITAL+CENSUS+SIMULATION&rft.inventor=Balakrishnan%2C+Syamanthaka&rft.inventor=Boverman%2C+Gregory&rft.inventor=Kulkarni%2C+Chaitanya&rft.inventor=Noren%2C+David+Paul&rft.inventor=Adhikari%2C+Lasith&rft.inventor=Simhon%2C+Eran&rft.date=2023-01-12&rft.externalDBID=A1&rft.externalDocID=US2023008936A1 |