MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER

The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g).

Saved in:
Bibliographic Details
Main Authors Lotfollahi, Mohammad, Theis, Fabian, Wolf, Fabian Alexander
Format Patent
LanguageEnglish
Published 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g).
AbstractList The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g).
Author Wolf, Fabian Alexander
Theis, Fabian
Lotfollahi, Mohammad
Author_xml – fullname: Lotfollahi, Mohammad
– fullname: Theis, Fabian
– fullname: Wolf, Fabian Alexander
BookMark eNrjYmDJy89L5WSw8fV3cfXx8fRzV_B1DfHwd1EIDQZxHBWc_f1cPEM8_f0cfRTCHIM8HaFsx9AQf1c_Z6C2IB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGRsYWxpYepoaEycKgDNNyxz
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2022383985A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2022383985A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:49:43 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2022383985A13
Notes Application Number: US202017763501
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&CC=US&NR=2022383985A1
ParticipantIDs epo_espacenet_US2022383985A1
PublicationCentury 2000
PublicationDate 20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221201
  day: 01
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum Fuer Gesundhelt Und Umwelt (GmbH)
RelatedCompanies_xml – name: Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum Fuer Gesundhelt Und Umwelt (GmbH)
Score 3.4341948
Snippet The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
Title MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&locale=&CC=US&NR=2022383985A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTqUydElD2VnRb-iE4pGvSdULb0X2wt9FmKQjSDVfx3_eadbqnPSaB4xJyd_kld78APKamYSyMdqph7Io1atJES54ToaWxoacL2WnFelHg7AeGN6HvM31Wgc9tLYziCf1R5IhoUQLtPVf-evV_icVUbuX6KfnAruWbO-6yZomO2-iIERuzXpcPQxY6TcfpTkbNIFJjCMZeLN1GrHSAB2mzsAc-7RV1KavdoOKeweEQ5WX5OVRkVoMTZ_v3Wg2O_fLJuwZHKkdTrLGztMP1Bbz6IeMIw4M-8fnYCxkpvs_oE5s4YcAGG4JbMrWjQUl2S3AfhhwBPOPRJTy4fOx4Gio0_5v_fDLa1b5zBdVsmck6ENlqJ4gfBJW6pFTosWjFhmVSK01FQUV3DY19km72D9_CadHc5G40oJp_fcs7jMB5cq8W7hcFkYPy
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4Q_IFvihpU1CYa3hYFuoGJxIy1Y6jbCAzCG9lKl5iYQWTGf99bGcoTr73k0mt6vX7t3XcA93HLMOZGI9YwdoUabdFIix4jocWhocdz2ayHelbg7HqGM6avU31agM9NLYziCf1R5IjoUQL9PVXn9fL_EYup3MrVQ_SBQ4sXO-iwWo6OG3gQIzZm3Q4f-My3apbVGY9q3lDJEIw9tXUTsdIeXrJbmT_wSTerS1luBxX7GPYHqC9JT6AgkzKUrE3vtTIcuvmXdxkOVI6mWOFg7oerU3h2fcYRhns94vLA8RnJ2mf0iEks32P9NcEtmZjDfk52S3Af-hwBPOPDM7izeWA5Gk5o9mf_bDzann3zHIrJIpEVILLeiBA_CCp1SanQQ1EP0TDajmORUdFdQHWXpsvd4lsoOYH7PkNj3q7gKBOt8ziqUEy_vuU1RuM0ulGL-AtiGobl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MODELLING+METHOD+USING+A+CONDITIONAL+VARIATIONAL+AUTOENCODER&rft.inventor=Lotfollahi%2C+Mohammad&rft.inventor=Theis%2C+Fabian&rft.inventor=Wolf%2C+Fabian+Alexander&rft.date=2022-12-01&rft.externalDBID=A1&rft.externalDocID=US2022383985A1