MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER
The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g).
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g). |
---|---|
AbstractList | The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a conditional variational autoencoder, CVAE, with an encoder (f) and a decoder (g). |
Author | Wolf, Fabian Alexander Theis, Fabian Lotfollahi, Mohammad |
Author_xml | – fullname: Lotfollahi, Mohammad – fullname: Theis, Fabian – fullname: Wolf, Fabian Alexander |
BookMark | eNrjYmDJy89L5WSw8fV3cfXx8fRzV_B1DfHwd1EIDQZxHBWc_f1cPEM8_f0cfRTCHIM8HaFsx9AQf1c_Z6C2IB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGRsYWxpYepoaEycKgDNNyxz |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2022383985A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2022383985A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:49:43 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2022383985A13 |
Notes | Application Number: US202017763501 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&CC=US&NR=2022383985A1 |
ParticipantIDs | epo_espacenet_US2022383985A1 |
PublicationCentury | 2000 |
PublicationDate | 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221201 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum Fuer Gesundhelt Und Umwelt (GmbH) |
RelatedCompanies_xml | – name: Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum Fuer Gesundhelt Und Umwelt (GmbH) |
Score | 3.4341948 |
Snippet | The present invention relates to a computer-implemented method for modelling genomic data represented in an unsupervised neural network, trVAE, comprising a... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
Title | MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&locale=&CC=US&NR=2022383985A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTqUydElD2VnRb-iE4pGvSdULb0X2wt9FmKQjSDVfx3_eadbqnPSaB4xJyd_kld78APKamYSyMdqph7Io1atJES54ToaWxoacL2WnFelHg7AeGN6HvM31Wgc9tLYziCf1R5IhoUQLtPVf-evV_icVUbuX6KfnAruWbO-6yZomO2-iIERuzXpcPQxY6TcfpTkbNIFJjCMZeLN1GrHSAB2mzsAc-7RV1KavdoOKeweEQ5WX5OVRkVoMTZ_v3Wg2O_fLJuwZHKkdTrLGztMP1Bbz6IeMIw4M-8fnYCxkpvs_oE5s4YcAGG4JbMrWjQUl2S3AfhhwBPOPRJTy4fOx4Gio0_5v_fDLa1b5zBdVsmck6ENlqJ4gfBJW6pFTosWjFhmVSK01FQUV3DY19km72D9_CadHc5G40oJp_fcs7jMB5cq8W7hcFkYPy |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4Q_IFvihpU1CYa3hYFuoGJxIy1Y6jbCAzCG9lKl5iYQWTGf99bGcoTr73k0mt6vX7t3XcA93HLMOZGI9YwdoUabdFIix4jocWhocdz2ayHelbg7HqGM6avU31agM9NLYziCf1R5IjoUQL9PVXn9fL_EYup3MrVQ_SBQ4sXO-iwWo6OG3gQIzZm3Q4f-My3apbVGY9q3lDJEIw9tXUTsdIeXrJbmT_wSTerS1luBxX7GPYHqC9JT6AgkzKUrE3vtTIcuvmXdxkOVI6mWOFg7oerU3h2fcYRhns94vLA8RnJ2mf0iEks32P9NcEtmZjDfk52S3Af-hwBPOPDM7izeWA5Gk5o9mf_bDzann3zHIrJIpEVILLeiBA_CCp1SanQQ1EP0TDajmORUdFdQHWXpsvd4lsoOYH7PkNj3q7gKBOt8ziqUEy_vuU1RuM0ulGL-AtiGobl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MODELLING+METHOD+USING+A+CONDITIONAL+VARIATIONAL+AUTOENCODER&rft.inventor=Lotfollahi%2C+Mohammad&rft.inventor=Theis%2C+Fabian&rft.inventor=Wolf%2C+Fabian+Alexander&rft.date=2022-12-01&rft.externalDBID=A1&rft.externalDocID=US2022383985A1 |