Distributed Power Harvesting Systems Using DC Power Sources

A photovoltaic panel with multiple photovoltaic sub-strings including serially-connected photovoltaic cells and having direct current (DC) outputs adapted for interconnection in parallel into a parallel-connected DC power source. A direct current (DC) power converter including input terminals and ou...

Full description

Saved in:
Bibliographic Details
Main Authors Galin, Yoav, Sella, Guy, Yoscovich, Ilan, Binder, Yaron, Adest, Meir, Handelsman, Lior, Gazit, Meir, Fishelov, Amir
Format Patent
LanguageEnglish
Published 18.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A photovoltaic panel with multiple photovoltaic sub-strings including serially-connected photovoltaic cells and having direct current (DC) outputs adapted for interconnection in parallel into a parallel-connected DC power source. A direct current (DC) power converter including input terminals and output terminals is adapted for coupling to the parallel-connected DC power source and for converting an input power received at the input terminals to an output power at the output terminals. The direct current (DC) power converter optionally has a control loop configured to set the input power received at the input terminals according to a previously determined criterion. The control loop may be adapted to receive a feedback signal from the input terminals for maximizing the input power. A bypass diode is typically connected in shunt across the input terminals of the converter. The bypass diode functions by passing current during a failure of any of the sub-strings and/or a partial shading of the sub-strings. The bypass diode may be a single bypass diode connected across the parallel-connected DC power source. The DC power converter may convert the input power at high current to the output power at a lower current. The output terminals may be connectible with wire cables to a load, and the DC power converter is configured to reduce energy loss through the wire cables to the load.
Bibliography:Application Number: US202217686814