UNSUPERVISED LEARNING OF OBJECT KEYPOINT LOCATIONS IN IMAGES THROUGH TEMPORAL TRANSPORT OR SPATIO-TEMPORAL TRANSPORT
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in images. In particular, a keypoint extraction machine learning model having a plurality of keypoint model parameters is trained to receive an input...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
07.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in images. In particular, a keypoint extraction machine learning model having a plurality of keypoint model parameters is trained to receive an input image and to process the input image in accordance with the keypoint model parameters to generate a plurality of keypoint locations in the input image. The machine learning model is trained using either temporal transport or spatio-temporal transport. |
---|---|
AbstractList | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in images. In particular, a keypoint extraction machine learning model having a plurality of keypoint model parameters is trained to receive an input image and to process the input image in accordance with the keypoint model parameters to generate a plurality of keypoint locations in the input image. The machine learning model is trained using either temporal transport or spatio-temporal transport. |
Author | Gupta, Ankush Kulkarni, Tejas Dattatraya |
Author_xml | – fullname: Kulkarni, Tejas Dattatraya – fullname: Gupta, Ankush |
BookMark | eNqNi70KwjAURjvo4N87XHAu1EjBNdbbNtrmhuRGcCpF4iRtoX1_VHBzcfoOnPMto1nXd2ERTV47b9BelcMTVCitVroAyoGOZ8wYLngzpDRDRZlkRdqB0qBqWaADLi35ogTG2pCVFbCV2r2RgSw48znEv3IdzR_tcwyb766ibY6clXEY-iaMQ3sPXZga70QihNil6SGRu_1_1QuNwTx5 |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2022215580A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2022215580A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:04:47 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2022215580A13 |
Notes | Application Number: US202017608620 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220707&DB=EPODOC&CC=US&NR=2022215580A1 |
ParticipantIDs | epo_espacenet_US2022215580A1 |
PublicationCentury | 2000 |
PublicationDate | 20220707 |
PublicationDateYYYYMMDD | 2022-07-07 |
PublicationDate_xml | – month: 07 year: 2022 text: 20220707 day: 07 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | DeepMind Technologies Limited |
RelatedCompanies_xml | – name: DeepMind Technologies Limited |
Score | 3.413782 |
Snippet | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unsupervised learning of object keypoint locations in... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
Title | UNSUPERVISED LEARNING OF OBJECT KEYPOINT LOCATIONS IN IMAGES THROUGH TEMPORAL TRANSPORT OR SPATIO-TEMPORAL TRANSPORT |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220707&DB=EPODOC&locale=&CC=US&NR=2022215580A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8Bh-v-lU_JgSUPpW7FbbzochXZuu1TUp_RjzaaxpC4J0w1X8-6ah04GwtyRHDu7gch-5D4D7QtFSvSgMmfWZKnONp8lPWZpxwVO7WaHp866YReAT3U0eX6batAUf61oY0Sf0WzRH5BLFuLxX4r1e_gWxbJFbuXpI3_nR4tmJB7bUeMe9Xt29RrKHAxxQm1qSZQ2SSCKhgHHtpvUVk_tKu9yQNuoEMDwZ1nUpy02l4hzDXsDxldUJtPKyDYfWevZaGw785su7DfsiR5Ot-GEjh6tTqBISJQEOJ16EbTTGZkg8MkLUQVTML0Gv-C2gHonRmDaVwsgjyPPNEY5Q7IY0Gbkoxn4dpBqjODRJxJcxoiGKgvqC_B94BncOji1X5oTMfvk2S6JNqtVz2CkXZX4BiM25EcKMTO3q3EHIWF9Rc2YUWqYrabdQ9UvobMN0tR18DUf1VuS0Gh3YqT6_8huuuav0VjD8B5z0k3Q |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da4MwMJR9dW9bt7GPbgts-CbTOq17KMNqrK4aRWPpnkqNCoNhy-rY31_M7FYY9C3ckYM7uNxH7gOA-0JSU60o-iLVqSIyi6eKT1maMcVT5KxQtbnMdxH4WHOSx5epOm2B93UvDJ8T-sWHIzKNokzfK_5eL_-SWBavrVw9pG8MtHi2ycASmui416un1wjWcIDCwApMwTQHSSzgiOOYdVN1yWCx0i5zsvV60j6aDOu-lOWmUbGPwF7I6JXVMWjlZQe0zfXutQ448Jsv7w7Y5zWadMWAjR6uTkCV4DgJUTRxY2RBDxkRdvEIBjYM-P4SOEavYeBiAr2g6RSGLoaub4xQDIkTBcnIgQT5dZLKgyQycMyOBAYRjMP6gvgfeQrubERMR2SMzH7lNkviTa6VM7BTLsr8HEA6Z04I7WeKrLEAIaO6pOS0X6iZJqVyoWgXoLuN0uV29C1oO8T3Zp6Lx1fgsN7P_pOz6IKd6uMzv2ZWvEpvuPC_Aa-xllk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=UNSUPERVISED+LEARNING+OF+OBJECT+KEYPOINT+LOCATIONS+IN+IMAGES+THROUGH+TEMPORAL+TRANSPORT+OR+SPATIO-TEMPORAL+TRANSPORT&rft.inventor=Kulkarni%2C+Tejas+Dattatraya&rft.inventor=Gupta%2C+Ankush&rft.date=2022-07-07&rft.externalDBID=A1&rft.externalDocID=US2022215580A1 |