MACHINE LEARNING FRAUD RESILIENCY USING PERCEPTUAL DESCRIPTORS

Machine learning fraud resiliency using perceptual descriptors is described. An example of a computer-readable storage medium includes instructions for accessing multiple examples in a training dataset for a classifier system; calculating one or more perceptual hashes for each of the examples; gener...

Full description

Saved in:
Bibliographic Details
Main Authors Ben-Shalom, Omer, Nayshtut, Alex, Kellermann, Raizy
Format Patent
LanguageEnglish
Published 14.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning fraud resiliency using perceptual descriptors is described. An example of a computer-readable storage medium includes instructions for accessing multiple examples in a training dataset for a classifier system; calculating one or more perceptual hashes for each of the examples; generating clusters of perceptual hashes for the multiple examples based on the calculation of the one or more perceptual hashes for each of the plurality of examples; obtaining an inference sample for classification by the classifier system; generating a first classification result for the inference sample utilizing a neural network classifier and generating a second classification result utilizing the generated clusters of perceptual hashes; comparing the first classification result with the second classification result; and, upon a determination that the first classification result does not match the second classification result, determining a suspicion of an adversarial attack.
AbstractList Machine learning fraud resiliency using perceptual descriptors is described. An example of a computer-readable storage medium includes instructions for accessing multiple examples in a training dataset for a classifier system; calculating one or more perceptual hashes for each of the examples; generating clusters of perceptual hashes for the multiple examples based on the calculation of the one or more perceptual hashes for each of the plurality of examples; obtaining an inference sample for classification by the classifier system; generating a first classification result for the inference sample utilizing a neural network classifier and generating a second classification result utilizing the generated clusters of perceptual hashes; comparing the first classification result with the second classification result; and, upon a determination that the first classification result does not match the second classification result, determining a suspicion of an adversarial attack.
Author Kellermann, Raizy
Nayshtut, Alex
Ben-Shalom, Omer
Author_xml – fullname: Ben-Shalom, Omer
– fullname: Nayshtut, Alex
– fullname: Kellermann, Raizy
BookMark eNrjYmDJy89L5WSw83V09vD0c1XwcXUM8vP0c1dwC3IMdVEIcg329PF09XOOVAgNBgkHuAY5uwaEhDr6KLi4BjsHeQaE-AcF8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI0NDEyNTU0dDY-JUAQAu1i0C
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2022114255A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2022114255A13
IEDL.DBID EVB
IngestDate Fri Oct 18 06:08:38 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2022114255A13
Notes Application Number: US202117560943
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220414&DB=EPODOC&CC=US&NR=2022114255A1
ParticipantIDs epo_espacenet_US2022114255A1
PublicationCentury 2000
PublicationDate 20220414
PublicationDateYYYYMMDD 2022-04-14
PublicationDate_xml – month: 04
  year: 2022
  text: 20220414
  day: 14
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies Intel Corporation
RelatedCompanies_xml – name: Intel Corporation
Score 3.3875666
Snippet Machine learning fraud resiliency using perceptual descriptors is described. An example of a computer-readable storage medium includes instructions for...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title MACHINE LEARNING FRAUD RESILIENCY USING PERCEPTUAL DESCRIPTORS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220414&DB=EPODOC&locale=&CC=US&NR=2022114255A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da8IwED_Efb5tbsNtbhQ2-iZrbWp9caOmqXZoLf0Y7klMjTAYVWbH_v1dgm4--RSSg-M48svxu8slAI8G57mwZrxpLGyjSebmHDE3nyHcrbaZ2wvcVrLfeRS2Bxl5ndiTCnxue2HUO6E_6nFERFSOeC_Veb36T2J56m7l-ol_4NLyxU-7nr5hx62WQUyie70ui8bemOqUdrNED2Mlk22jtu0iVzrA0VG07a0n-1JWu0HFP4PDCPUV5TlURFGDE7r9e60Gx6NNybsGR-qOZr7GxQ0O1xfwPHLpIAiZNmRuHAZhX_NjN_M0dGcwlFmjd03-p9HXIhZTFqWZO9Q8ltA4iNJxnFzCg89SOmiiSdM_D0yzZNd-6wqqxbIQddA44QhB7pBOjjwqtzmeFwSjdscRlhBO5xoa-zTd7BffwqmcyuKJSRpQLb--xR3G4JLfK9f9Al_5g6Y
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfOBNUeMDtYmmN2JLt9ALmrJtabUtTR8GT4QtS2JiCpEa_77TDSgnrjvJZDPZb2a_eewCPCiM5VybsrYy15U2makzxNxsinDXumquz_FYVfPOQdh1M_Iy1sc1-NzMwoh3Qn_E44iIqBzxXgp_vfxPYlmit3L1yD5wafHspH1LXrPjTkchKpGtQd-ORtaIypT2s0QOYyGrxkZ13USutIeXbEOQpbdBNZey3A4qzjHsR6ivKE-gxosmNOjm77UmHAbrkncTDkSPZr7CxTUOV6fwFJjU9UJb8m0zDr1wKDmxmVkSmtPzq6zRu1T9pzGUIjumdpRmpi9ZdkJjL0pHcXIG946dUreNW5r8WWCSJdv7186hXiwKfgESIwwhyHrEyJFH5TpDf0Ewahs9rnHeMy6htUvT1W7xHTTcNPAnvhe-XsNRJaoKKSppQb38-uY3GI9LdivM-Au034aW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MACHINE+LEARNING+FRAUD+RESILIENCY+USING+PERCEPTUAL+DESCRIPTORS&rft.inventor=Ben-Shalom%2C+Omer&rft.inventor=Nayshtut%2C+Alex&rft.inventor=Kellermann%2C+Raizy&rft.date=2022-04-14&rft.externalDBID=A1&rft.externalDocID=US2022114255A1