GENERATIVE NEURAL NETWORK SYSTEMS FOR GENERATING INSTRUCTION SEQUENCES TO CONTROL AN AGENT PERFORMING A TASK
A generative adversarial neural network system to provide a sequence of actions for performing a task. The system comprises a reinforcement learning neural network subsystem coupled to a simulator and a discriminator neural network. The reinforcement learning neural network subsystem includes a poli...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
02.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A generative adversarial neural network system to provide a sequence of actions for performing a task. The system comprises a reinforcement learning neural network subsystem coupled to a simulator and a discriminator neural network. The reinforcement learning neural network subsystem includes a policy recurrent neural network to, at each of a sequence of time steps, select one or more actions to be performed according to an action selection policy, each action comprising one or more control commands for a simulator. The simulator is configured to implement the control commands for the time steps to generate a simulator output. The discriminator neural network is configured to discriminate between the simulator output and training data, to provide a reward signal for the reinforcement learning. The simulator may be non-differentiable simulator, for example a computer program to produce an image or audio waveform or a program to control a robot or vehicle. |
---|---|
AbstractList | A generative adversarial neural network system to provide a sequence of actions for performing a task. The system comprises a reinforcement learning neural network subsystem coupled to a simulator and a discriminator neural network. The reinforcement learning neural network subsystem includes a policy recurrent neural network to, at each of a sequence of time steps, select one or more actions to be performed according to an action selection policy, each action comprising one or more control commands for a simulator. The simulator is configured to implement the control commands for the time steps to generate a simulator output. The discriminator neural network is configured to discriminate between the simulator output and training data, to provide a reward signal for the reinforcement learning. The simulator may be non-differentiable simulator, for example a computer program to produce an image or audio waveform or a program to control a robot or vehicle. |
Author | Vinyals, Oriol Ganin, Iaroslav Kulkarni, Tejas Dattatraya Eslami, Seyed Mohammadali |
Author_xml | – fullname: Vinyals, Oriol – fullname: Eslami, Seyed Mohammadali – fullname: Ganin, Iaroslav – fullname: Kulkarni, Tejas Dattatraya |
BookMark | eNqNy7sKwkAQQNEttPD1DwPWgongo1yWSQyJs7ozq1iFIGsVkkD8f4ygvdVtzp2qUdM2YaLqFAmdluyKQOidLobIzboc-M6CJ4bEOvgpSiEjFueNZJaA8eKRDDKIBWNJnC1AE-jBC5zRDe_pM2kQzflcjZ9V3YfFtzO1TFDMcRW6tgx9Vz1CE16l53gdR_EuOmz3Otr8p96Vsjns |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2021271968A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2021271968A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:57:45 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2021271968A13 |
Notes | Application Number: US201916967597 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210902&DB=EPODOC&CC=US&NR=2021271968A1 |
ParticipantIDs | epo_espacenet_US2021271968A1 |
PublicationCentury | 2000 |
PublicationDate | 20210902 |
PublicationDateYYYYMMDD | 2021-09-02 |
PublicationDate_xml | – month: 09 year: 2021 text: 20210902 day: 02 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | DeepMind Technologies Limited |
RelatedCompanies_xml | – name: DeepMind Technologies Limited |
Score | 3.356601 |
Snippet | A generative adversarial neural network system to provide a sequence of actions for performing a task. The system comprises a reinforcement learning neural... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | GENERATIVE NEURAL NETWORK SYSTEMS FOR GENERATING INSTRUCTION SEQUENCES TO CONTROL AN AGENT PERFORMING A TASK |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210902&DB=EPODOC&locale=&CC=US&NR=2021271968A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_HxT1PiBpolmb4tSB4MHYsZWRGEbrh3CE9nGSEzIIDLjv--1gvLEU9Ne26RNr9df-7srwF1M8ZBAJzW9ElUi3ZgiQJHRT_WqaSS4oqQJld7IrlfrhMbrsDoswGztC6PihH6r4IioUQnqe67268X_JZajuJXL-_gDi-ZPbdF0tBU6popmqDmtJuv7jm9rtt0MueYFSkZNXG51C7HSDh6kTUkAY4OW9EtZbBqV9hHs9rG_LD-GQpqV4MBe_71Wgn139eRdgj3F0UyWWLjSw-UJzH4ZZ-JlwIjHwsDqYSLe_aBL-IgL5nKC6I6sa3nPBEG6CELFGCGcvYXyZokT4RPb90Tg94jlEQvrC9JnAbZ1ZSOLCIt3T-G2zYTd0XEA47_5God8c7SPZ1DM5ll6DmRiJuk0eaATGleNuE4b00raaMRJakYR6mntAsrberrcLr6CQ5lVBCxahmL--ZVeo8XO4xs10T_z9ZCD |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_MA3RY0fqE00e1uUOhg8EDO2Isg-cOsQn8g2RmJCBpEZ_32vFZQnnpr0rk3a9Hr9tb-7AtzFFA8JdFJXq1E1UrUpAhSR_VSt6VqCK0q4UBGN7Lj1bqi9jGqjAszWsTAyT-i3TI6IFpWgvedyv178X2JZklu5vI8_sGr-1OEtS1mhYypphorVbrGBZ3mmYpqtMFBcX8qojsutYSBW2sFDdkNk2mfDtohLWWw6lc4h7A6wvyw_gkKalaFkrv9eK8O-s3ryLsOe5GgmS6xc2eHyGGa_jDPeGzListA3bCz4m-f3SfAecOYEBNEdWWu5zwRBOvdDyRghAXsNxc1SQLhHTM_lvmcTwyUG6nMyYD62dUQjg3Aj6J_AbYdxs6viAMZ_8zUOg83RPp5CMZtn6RmQiZ6k0-SBTmhc0-IGbU6rabMZJ6keRWin9XOobOvpYrv4Bkpd7thju-f2L-FAiCQZi1agmH9-pVfovfP4Wk76D-ROk3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=GENERATIVE+NEURAL+NETWORK+SYSTEMS+FOR+GENERATING+INSTRUCTION+SEQUENCES+TO+CONTROL+AN+AGENT+PERFORMING+A+TASK&rft.inventor=Vinyals%2C+Oriol&rft.inventor=Eslami%2C+Seyed+Mohammadali&rft.inventor=Ganin%2C+Iaroslav&rft.inventor=Kulkarni%2C+Tejas+Dattatraya&rft.date=2021-09-02&rft.externalDBID=A1&rft.externalDocID=US2021271968A1 |