TECHNOLOGIES FOR INFERRING A PATIENT CONDITION USING MACHINE LEARNING
A machine learning compute device may include circuitry configured to obtain sensor data from a product associated with a patient. The circuitry may also be configured to obtain response variable data indicative of an actual condition of the patient associated with the sensor data. Additionally, the...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A machine learning compute device may include circuitry configured to obtain sensor data from a product associated with a patient. The circuitry may also be configured to obtain response variable data indicative of an actual condition of the patient associated with the sensor data. Additionally, the circuitry may be configured to train, based on the response variable data and the sensor data, an inference model to infer the actual condition of the patient from the sensor data. |
---|---|
AbstractList | A machine learning compute device may include circuitry configured to obtain sensor data from a product associated with a patient. The circuitry may also be configured to obtain response variable data indicative of an actual condition of the patient associated with the sensor data. Additionally, the circuitry may be configured to train, based on the response variable data and the sensor data, an inference model to infer the actual condition of the patient from the sensor data. |
Author | Receveur, Timothy J Fu, Yongji Bhai, Aziz A |
Author_xml | – fullname: Bhai, Aziz A – fullname: Receveur, Timothy J – fullname: Fu, Yongji |
BookMark | eNrjYmDJy89L5WRwDXF19vDz9_F393QNVnDzD1Lw9HNzDQry9HNXcFQIcAzxdPULUXD293PxDPH091MIDQbJ-Do6e3j6uSr4uDoG-QEFeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRIRAbWBo6GhoTpwoAVZIumw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2021202091A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2021202091A13 |
IEDL.DBID | EVB |
IngestDate | Fri Sep 06 06:12:10 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2021202091A13 |
Notes | Application Number: US202017110600 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210701&DB=EPODOC&CC=US&NR=2021202091A1 |
ParticipantIDs | epo_espacenet_US2021202091A1 |
PublicationCentury | 2000 |
PublicationDate | 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 20210701 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | Hill-Rom Services, Inc |
RelatedCompanies_xml | – name: Hill-Rom Services, Inc |
Score | 3.3417783 |
Snippet | A machine learning compute device may include circuitry configured to obtain sensor data from a product associated with a patient. The circuitry may also be... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING CHAIRS FOR DENTISTRY COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS FUNERAL DEVICES HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA HUMAN NECESSITIES HYGIENE IDENTIFICATION INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS MEDICAL OR VETERINARY SCIENCE OPERATING TABLES OR CHAIRS PHYSICS SURGERY TRANSPORT OR ACCOMODATION FOR PATIENTS |
Title | TECHNOLOGIES FOR INFERRING A PATIENT CONDITION USING MACHINE LEARNING |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210701&DB=EPODOC&locale=&CC=US&NR=2021202091A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da8IwED_Efb5tbmMfbgQ2fCuzmqh9kFHTdO2YUbQO36RNKwxGldmxf3-XTDeffMhD7uBIDi6XX3IfAA9ZXTUbsWNbzQ6NLco6mdWZK2bZLHYoq6d2i-lE4b5sBRP6MmXTEnxscmFMndBvUxwRLUqhvRfmvF7-P2J5JrZy9Zi8I2nx5Eddr7ZGx4hf2oiNvV5XDAfegNc4707GNTkyPBzoHV3ESnt4kW5rexBvPZ2Xstx2Kv4J7A9RXl6cQinLK3DEN73XKnDYX395V-DAxGiqFRLXdrg6AxEJHkjTyECMCQI5EkpfjHRkA3HJ0I1CISPCB9IL9RMU0c01nknf5UEoBXkV7kgi4RzufRHxwMKVzf4UMZuMt7fRvIByvsizSyBJ2qAxtZVCeEaTedtRaaOVZo5CqJykzLmC6i5J17vZN3Csp79BqlUoF59f2S264iK5Mxr8ARvdhcc |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_MA3RY0fqE00vC2ysQF7IGZ0nZuyQmAY3sjWjcTEDCIz_vteKyhPPPTlLrm0l1yvv-t9ADxkDdE0YlvXmh0z1kyrk2mdubA03Ypt02qkesuShcIhb_kT82VqTUvwsamFUX1Cv1VzRLQogfZeqPt6-R_EclVu5eoxeUfS4smLum59jY4Rv7QRG7u9LhsO3AGtU9qdjOt8pHi40Ds6iJX28JHdlvbA3nqyLmW57VS8Y9gfory8OIFSllehQjez16pwGK6_vKtwoHI0xQqJaztcnQKLGPW5GmTAxgSBHAm4x0Yys4E4ZOhEAeMRoQPuBjIEReRwjWcSOtQPOCN95ow4Es7g3mMR9TXc2exPEbPJePsYzXMo54s8uwCSpIYZm7oQCM_MZN62RWq00swWCJWT1LIvobZL0tVu9h1U_Cjsz_oBf72GI8n6TVitQbn4_Mpu0C0Xya3S5g-Oj4i6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=TECHNOLOGIES+FOR+INFERRING+A+PATIENT+CONDITION+USING+MACHINE+LEARNING&rft.inventor=Bhai%2C+Aziz+A&rft.inventor=Receveur%2C+Timothy+J&rft.inventor=Fu%2C+Yongji&rft.date=2021-07-01&rft.externalDBID=A1&rft.externalDocID=US2021202091A1 |