LITHOGRAPHIC HOTSPOT DETECTION USING MULTIPLE MACHINE LEARNING KERNELS

A hotspot detection system that classifies a set of hotspot training data into a plurality of hotspot clusters according to their topologies, where the hotspot clusters are associated with different hotspot topologies, and classifies a set of non-hotspot training data into a plurality of non-hotspot...

Full description

Saved in:
Bibliographic Details
Main Authors Lin, Geng-He, Yu, Yen-Ting, Jiang, Hui-Ru, Chiang, Charles C
Format Patent
LanguageEnglish
Published 19.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hotspot detection system that classifies a set of hotspot training data into a plurality of hotspot clusters according to their topologies, where the hotspot clusters are associated with different hotspot topologies, and classifies a set of non-hotspot training data into a plurality of non-hotspot clusters according to their topologies, where the non-hotspot clusters are associated with different topologies. The system extracts topological and non-topological critical features from the hotspot clusters and centroids of the non-hotspot clusters. The system also creates a plurality of kernels configured to identify hotspots, where each kernel is constructed using the extracted critical features of the non-hotspot clusters and the extracted critical features from one of the hotspot clusters, and each kernel is configured to identify hotspot topologies different from hotspot topologies that the other kernels are configured to identify.
AbstractList A hotspot detection system that classifies a set of hotspot training data into a plurality of hotspot clusters according to their topologies, where the hotspot clusters are associated with different hotspot topologies, and classifies a set of non-hotspot training data into a plurality of non-hotspot clusters according to their topologies, where the non-hotspot clusters are associated with different topologies. The system extracts topological and non-topological critical features from the hotspot clusters and centroids of the non-hotspot clusters. The system also creates a plurality of kernels configured to identify hotspots, where each kernel is constructed using the extracted critical features of the non-hotspot clusters and the extracted critical features from one of the hotspot clusters, and each kernel is configured to identify hotspot topologies different from hotspot topologies that the other kernels are configured to identify.
Author Chiang, Charles C
Yu, Yen-Ting
Jiang, Hui-Ru
Lin, Geng-He
Author_xml – fullname: Lin, Geng-He
– fullname: Yu, Yen-Ting
– fullname: Jiang, Hui-Ru
– fullname: Chiang, Charles C
BookMark eNrjYmDJy89L5WRw8_EM8fB3D3IM8PB0VvDwDwkO8A9RcHENcXUO8fT3UwgN9vRzV_AN9QnxDPBxVfB1dPbw9HNV8HF1DPIDyXi7Bvm5-gTzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjA0NLIwtzAyNDR0Nj4lQBALgyL1g
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2019287021A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2019287021A13
IEDL.DBID EVB
IngestDate Fri Jul 19 12:53:13 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2019287021A13
Notes Application Number: US201916432514
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190919&DB=EPODOC&CC=US&NR=2019287021A1
ParticipantIDs epo_espacenet_US2019287021A1
PublicationCentury 2000
PublicationDate 20190919
PublicationDateYYYYMMDD 2019-09-19
PublicationDate_xml – month: 09
  year: 2019
  text: 20190919
  day: 19
PublicationDecade 2010
PublicationYear 2019
RelatedCompanies Synopsys, Inc
RelatedCompanies_xml – name: Synopsys, Inc
Score 3.223572
Snippet A hotspot detection system that classifies a set of hotspot training data into a plurality of hotspot clusters according to their topologies, where the hotspot...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title LITHOGRAPHIC HOTSPOT DETECTION USING MULTIPLE MACHINE LEARNING KERNELS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190919&DB=EPODOC&locale=&CC=US&NR=2019287021A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD6MeX3TqXiZUlD2VlxX27UPQ7o0Xau90aayt7F2LQjSDVfx73sSNvVpj8mBkAS-fEnOd84BeFgowxKvDYg0wyhkpIChPDeMhdzPq7zsF4VelTwaOQh1N3t6mWrTFnxsY2FEntBvkRwREVUg3htxXq_-PrFsoa1cP-bv2LV8dtjI7m1ex8huJiLQHo9oHNkR6REyytJemAgb9-kNFAvfSnt4kR5yPNC3MY9LWf0nFecE9mMcr25OoVXWHTgi29prHTgMNi7vDhwIjWaxxs4NDtdn4Pgec6NJYsWuRyQ3YmkcMcmmjApNiMSLaUykIPOZF_tUCizieiGVfGolIbe80iSkfnoO9w5lxJVxarPfnZhl6f91qBfQrpd1eQnSoDJVXV1opZIj51bVPFcLrajMXNcUfa6oV9DdNdL1bvMNHPMml0koZhfazedXeYtc3OR3Ygt_AEqahu4
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH6UutSbVsWlakDpLdg0Jk0ORdJk0sRmI5lIb6VJExAkLTbi3_fN0GpPvb4PHjMD33yzvAXgaSENCjw2INM0LRdRAgbiXNMWYi8rs6KX52pZsGxkP1Cd9OVtqkwb8LnNheF1Qn94cURkVI58r_l-vfp_xLJ4bOX6OftA0_LVpkOru7kdo7rpyEBrNCRRaIVm1zSHadINYo6xP72-ZOBd6QAP2QPGB_I-Ynkpq11RsU_hMEJ_VX0GjaJqQ8vc9l5rw7G_-fJuwxGP0czXaNzwcH0OtudSJxzHRuS4puCENIlCKliEEh4TIrBmGmPBTz3qRh4RfMN03IAIHjHigCETEgfESy7g0SbUdEQc2uxvJWZpsjsP-RKa1bIqrkDol7qsygulkDLU3LKcZ3Ku5KWeqYqkziX5Gjr7PN3shx-g5VDfm3luMLmFEwaxkAlJ70Cz_vou7lCX6-yeL-cvylGJ4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=LITHOGRAPHIC+HOTSPOT+DETECTION+USING+MULTIPLE+MACHINE+LEARNING+KERNELS&rft.inventor=Lin%2C+Geng-He&rft.inventor=Yu%2C+Yen-Ting&rft.inventor=Jiang%2C+Hui-Ru&rft.inventor=Chiang%2C+Charles+C&rft.date=2019-09-19&rft.externalDBID=A1&rft.externalDocID=US2019287021A1